
1.1

1.2

1.2.1

1.2.2

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.5

1.6

1.7

1.8

Table	of	Contents
Signal	K	Specification

Getting	Started

Using	SK

Developing	with	SK

Data	Model

Full	and	Delta	Models

Multiple	Values

Metadata

Permissions

API

Ports,	Urls	and	Versioning

REST	API

Streaming	WebSocket	API

Discovery	&	Connection	Establishment

Subscription	Protocol

Notifications

Background	and	Design	Rationale

How	Can	I	Help?

Appendix	A:	Keys	Reference

Appendix	B:	Changelog

1

Introduction
This	is	the	documentation	for	the	Signal	K	Specification	master	(latest)	version,	which	is
available	in	the	following	formats;

html	(this	document)
pdf
epub
mobi

What	is	Signal	K?
Signal	K	is	a	modern	and	open	data	format	for	marine	use.	It	is	an	Internet	friendly
standard	built	on	standard	web	technologies,	such	as	JSON	and	WebSockets.	Signal	K
is	Free	and	Open	Source	software.	This	document	is	licensed	under	the	Creative
Commons	CC-BY-SA	license.	All	Signal	K	source	code	is	licensed	under	the	Apache
License,	Version	2.0.	Signal	K	is	developed	in	the	open	with	help	from	the	marine
community.	Your	ideas	and	feedback	are	valuable	and	welcome.

Signal	K	is	designed	to	work	in	harmony	with	the	boat's	existing	navigation	equipment
that	might	use	NMEA0183,	NMEA2000	or	proprietary	data	protocols,	converting	and
enhancing	this	information	to	a	modern	"web	friendly"	format	that	can	be	shared,
processed	and	displayed	on	the	latest	web	apps,	mobile	devices	and	cloud	servers.	A
typical	NMEA	based	setup	consists	of	an	NMEA-Signal	K	gateway	and	an	optional
server.	The	gateway	translates	the	NMEA	data	to	Signal	K	and	the	server	can	host
additional	functions	like	logging,	cloud	integration	and	data	analysis.

Signal	K	Specification

2

https://github.com/signalk/specification
http://signalk.org/specification/master/
http://signalk.org/specification/master/signalk_master.pdf
http://signalk.org/specification/master/signalk_master.epub
http://signalk.org/specification/master/signalk_master.mobi
https://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0

One	major	advantage	of	Signal	K	is	the	ability	to	represent	data	from	heterogeneous
sources.	In	addition	to	traditional	NMEA	sources	data	from	generic	sensors	as	well	as
modern	Signal	K	enabled	sensors	can	be	fused	into	a	single	data	model	and	a	single
protocol	for	accessing	the	data.	Another	typical	setup	is	a	Signal	K	server	with	adapters
and	converters	for	the	different	sources.

Signal	K	Specification

3

Signal	K	Data	Model	(A.K.A.	The	Schema)
The	Signal	K	Data	Model	or	schema	defines	a	universal	model	for	marine	related
information	and	it	is	specified	as	a	JSON	schema.	See	the	Signal	K	Data	Model	section
for	details.

In	traditional	marine	standards	there	are	many	tightly	defined	messages,	each	with	a
specific	purpose,	but	there	is	no	data	model	to	relate	them.	Furthermore,	any	device
which	needs	to	decode	those	messages	must	have	a	copy	of	the	data	dictionary	in	order
to	do	so.	By	defining	a	data	model	in	JSON	we	can	make	the	messaging	layer	simpler,
and	easily	extensible.	We	define	consistent	units	and	meta	data	for	each	data	point	in
the	model.	This	means	that	a	specific	data	point	(e.g.	COG)	will	always	be	found	at	a
predictable	address.

Signal	K	Specification

4

It	also	means	that	a	display	device	such	as	a	chartplotter	implementing	Signal	K	does
not	need	to	know	about	the	data	model	beforehand.	It	can	query	the	central	Signal	K
server	on	the	boat	to	get	all	the	information	it	needs	to	display	any	data	point.	This
metadata	may	include	information	such	as	the	unit	of	measure,	minimum	and	maximum
permissible	values,	alarm	thresholds	and	localized	display	name	for	every	data	point	in
the	model.

Signal	K	Message	Format

Signal	K	defines	methods	for	combining	arbitrary	data	from	the	Data	Model	into	valid
messages.	These	messages	are	in	UTF-8	JSON	format.

Rather	than	define	hundreds	of	specific	messages,	Signal	K	has	a	few	common
message	formats	which	can	contain	any	combination	of	data	from	the	Data	Model.	This
means	that	we	don’t	need	new	messages	for	every	new	case,	just	extra	data	in	the
payload.	It	means	that	any	device	can	read	any	message	and	a	device	can	introduce	a
new	data	point	which	can	be	understood	by	existing	devices	without	the	need	for
firmware	upgrades.

Signal	K	Transport	Layer
Signal	K	does	not	define	the	transport	or	wire	protocol.	Signal	K	messages	are	JSON
text	and	can	be	sent	over	almost	any	transport	layer.	However,	we	do	provide	guidance
on	how	to	make	an	initial	connection,	handle	negotiation,	subscription,	and
disconnection	for	a	given	transport	(e.g.	TCP/IP	or	serial).

Where	possible	we	use	well	established	standards	like	HTTPS,	REST,	WebSockets,
MQTT,	STOMP,	etc.	But	within	each	method	there	are	always	many	options	in	message
addressing,	formating,	or	transfer	(GET,	POST),	etc.

The	goal	is	to	try	to	establish	sensible	conventions	for	each	protocol,	to	make
development	and	interconnection	more	predictable.

Signal	K	Implementations
The	Signal	K	project	has	Open	Source	reference	server	implementations	in	Node	and
Java	and	example	web	apps	and	reference	code.	There	are	also	commercial	Signal	K
applications	and	solutions,	including	mobile	apps	available	on	the	Apple	App	and

Signal	K	Specification

5

https://github.com/SignalK/signalk-server-node
https://github.com/SignalK/signalk-server-java
http://signalk.org/applications_solutions.html

Android	Play	Stores,	as	well	as	hardware	products	like	iKommunicate.

Signal	K	Specification

6

http://ikommunicate.com/

Getting	Started	Using	Signal	K
You	can	start	using	Signal	K	by

connecting	to	the	demo	server	on	the	Internet	with	any	web	browser
installing	either	the	Node	or	Java	server	on	any	computer
getting	some	hardware	for	your	boat,	such	as	a	Raspberry	Pi,	suitable	USB
adapters	for	your	boat’s	network	(NMEA	0183,	NMEA	2000	or	roll	your	own	with	I2C
sensors)	and	installing	Node	or	Java	server
purchasing	a	commercial	Signal	K	gateway	such	as	an	iKommunicate	by	Digital
Yacht
installing	OpenPlotter,	which	includes	a	Signal	K	server

Once	you	have	a	server	running	(or	you	start	by	using	the	demo	server)	you	can	install
some	Signal	K	supporting	mobile	apps	such	as

NMEARemote	by	Zapfware	(iOS)
OceanIX	(Android)

Using	SK

7

http://demo.signalk.org/
https://github.com/signalk/signalk-server-node
https://github.com/signalk/signalk-server-java
https://en.wikipedia.org/wiki/Raspberry_Pi
http://digitalyacht.co.uk/product_info.php?products_id=11652Cached
http://www.actisense.com/products/nmea-2000/ngt-1/ngt-1.html
https://en.wikipedia.org/wiki/I%C2%B2C
https://ikommunicate.com
http://www.sailoog.com/en/openplotter
http://www.zapfware.de/en/products/nmearemote/
https://play.google.com/store/apps/details?id=com.easybizness.oceanIX

Getting	Started	in	Developing	with	Signal
K

Example	HTML5	Applications
Signal	K	JavaScript	Client
iKommunicate	Developer’s	Guide

Developing	with	SK

8

https://github.com/SignalK/signalk-server-node/tree/master/public/examples
https://github.com/SignalK/signalk-js-client
https://github.com/digitalyacht/ikommunicate/wiki/iKommunicate-Developer%27s-Guide-%28SDK%29

Signal	K	Data	Model
Signal	K	defines	two	data	formats,	full	and	delta,	for	representing	and	transmitting	data.

In	additiong	the	'sparse'	format	is	the	same	as	the	full	format,	but	doesn't	contain	a	full
tree,	just	parts	of	the	full	tree.

Full	format
The	simplest	format	is	the	full	format,	which	is	the	complete	Signal	K	data	model	as	a
JSON	string.

Full	and	Delta	Models

9

{

		"vessels":	{

				"urn:mrn:signalk:uuid:c0d79334-4e25-4245-8892-54e8ccc8021d":	{

						"version":	"0.1",

						"name":	"motu",

						"mmsi":	"2345678",

						"source":	"self",

						"timezone":	"NZDT",

						"navigation":	{

								"state":	{

										"value":	"sailing",

										"source":	"self",

										"timestamp":	"2014-03-24T00:15:41Z"

								},

								"headingTrue":	{

										"value":	2.3114,

										"$source":	"nmea0183-1.II",

										"sentence":	"HDT",

										"timestamp":	"2014-03-24T00:15:41Z"

								},

								"speedThroughWater":	{

										"value":	2.556,

										"$source":	"n2k-1.160",

										"pgn":	128259,

										"timestamp":	"2014-03-24T00:15:41Z"

								},

								"position":	{

										"longitude":	23.53885,

										"latitude":	60.0844,

										"$source":	"nmea0183-2.GP",

										"timestamp":	"2014-03-24T00:15:42Z",

										"sentence":	"GLL"

								}

						}

				}

		}

}

The	message	is	UTF-8	ASCII	text,	and	the	top-level	attribute(key)	is	always	"vessels".
Below	this	level	is	a	list	of	vessels,	identified	by	their	MMSI	number	or	a	generated
unique	id.	There	may	be	many	vessels,	if	data	has	been	received	from	AIS	or	other
sources.	The	format	for	each	vessel's	data	uses	the	same	standard	Signal	K	structure,
but	may	not	have	the	same	content,	i.e.	you	won't	have	as	much	data	about	other
vessels	as	you	have	about	your	own.

Full	and	Delta	Models

10

The	values	are	always	SI	units,	and	always	the	same	units	for	the	same	key.	I.e.
	speedOverGround		is	always	meters	per	second,	never	knots,	km/hr,	or	miles/hr.	This
means	you	never	have	to	send	'units'	with	data,	the	units	are	specific	for	a	key,	and
defined	in	the	data	schema.	A	simplified	version	of	the	JSON	schema	with	the	units	is
available	in	Keys	Reference	in	Appendix	A.

The	ordering	of	keys	is	also	not	important,	they	can	occur	in	any	order.	In	this	area
Signal	K	follows	normal	JSON	standards.

The	full	format	is	useful	for	backups,	and	for	populating	a	secondary	device,	or	just
updating	all	data,	a	kind	of	'this	is	the	current	state'	message.

However	sending	the	full	data	model	will	be	wasteful	of	bandwidth	and	CPU,	when	the
majority	of	data	does	not	change	often.	So	we	want	to	be	able	to	send	parts	of	the	model
(i.e.	parts	of	the	hierarchical	tree).

Sparse	format

The	sparse	format	is	the	same	as	the	full	format	but	only	contains	a	limited	part	of	the
tree.	This	can	be	one	or	more	data	values.

{

		"vessels":	{

				"self":	{

						"navigation":	{

								"position":	{

										"latitude":	-41.2936935424,

										"longitude":	173.2470855712

								}

						}

				}

		}

}

Mix	and	match	of	misc	values	are	also	valid:

Full	and	Delta	Models

11

{

		"vessels":	{

				"self":	{

						"navigation":	{

								"courseOverGroundTrue":	{

										"value":	11.9600000381

								},

								"position":	{

										"latitude":	-41.2936935424,

										"longitude":	173.2470855712,

										"altitude":	0

										}

								}

						}

				}

		}

}

This	mix	of	any	combination	of	values	means	we	don't	need	to	create	multiple	message
types	to	send	different	combinations	of	data.	Just	assemble	whatever	you	want	and
send	it.	When	parsing	an	incoming	message	a	device	should	skip	values	it	has	no
interest	in,	or	doesn't	recognise.	Hence	we	avoid	the	problem	of	multiple	message
definitions	for	the	same	or	similar	data,	and	we	avoid	having	to	decode	multiple
messages	with	fixed	formats.

Delta	format
While	building	the	reference	servers	and	clients	it	was	apparent	that	a	third	type	of
message	format	was	useful.	This	format	specifically	sends	changes	to	the	full	data
model.	This	was	useful	for	a	number	of	technical	reasons,	especially	in	clients	or
sensors	that	did	not	hold	a	copy	of	the	data	model.

The	format	looks	like	this	(pretty	printed):

Full	and	Delta	Models

12

{

				"context":	"vessels.urn:mrn:imo:mmsi:234567890",

				"updates":	[{

								"source":	{

												"type":	"NMEA2000",

												"src":	"017",

												"pgn":	127488,

												"label":	"N2000-01.017"

								},

								"timestamp":	"2010-01-07T07:18:44Z",

								"values":	[{

												"path":	"propulsion.0.revolutions",

												"value":	16.341667

								},	{

												"path":	"propulsion.0.boostPressure",

												"value":	45500.0

								},	{

												"path":	"propulsion.0.tiltTrim",

												"value":	48

								}]

				}]

}

In	more	detail	we	have	the	header	section:

{

		"context":	"vessels.urn:mrn:imo:mmsi:234567890",

		"updates":	[

				...data	goes	here...

]

}

A	delta	message	can	be	recognised	from	the	other	types	by	the	topmost	level	having
	updates		property.		updates		is	the	only	required	property.	If		context		is	missing	it	is
assumed	that	the	data	is	related	to	the		self		context.

Context	is	a	path	from	the	root	of	the	full	tree	to	the	container	object,	which	for	vessel
related	data	must	refer	to	the	vessel	directly	under		vessels	.	The	delimiter	in	the	context
path	is		.		(period).	In	this	case	the	context	is		vessels.urn:mrn:imo:mmsi:234567890	.	All
subsequent	data	is	relative	to	that	location.

The		updates		holds	an	array	(JSON	array)	of	updates,	each	of	which	has	a		source		and
a	JSON	array	of		values	.

Full	and	Delta	Models

13

{

		"source":	{

				"device":	"/dev/actisense",

				"src":	"115",

				"pgn":	"128267"

		},

		"timestamp":	"2014-08-15-16:00:00.081",

		"values":	[

				{

						"path":	"navigation.courseOverGroundTrue",

						"value":	2.971

				},

				{

						"path":	"navigation.speedOverGround",

						"value":	3.85

				}

]

}

An		update		has	a	single		source		value	and	it	applies	to	each	of	the		values		items.	In
cases	where	you	can	get	data	from	only	a	single	source	the	source	may	be	omitted	and
the	receiver	may	fill	it	in	when	multiplexing	data	from	several	sources.

A	Signal	K	producer	may	not	have	access	to	a	real	time	clock	or	UTC	time.	In	these
cases	timestamp	should	be	omitted.	Elements	in	the	Signal	K	processing	chain,	like	a
server	receiving	data	from	a	producer,	should	fill	in	timestamp	if	it	is	missing	in	the
incoming	delta	message.

Each		value		item	is	then	simply	a	pair	of		path		and		value	.	The		path		must	be	a	leaf
path:	it	must	be	a	path	to	a	leaf	the	of	the	full	model.	A	leaf	is	where	the	actual	value	of
the	Signal	K	property	is	and	where		timestamp	,		$source		and		values		properties	are	in
the	full	model.	The	value	is	often	a	scalar	-	a	numeric	value,	as	in	the	example	above,
but	it	can	also	be	an	object.	For	example	a		navigation.position		value	would	be	an
object	like		{"latitude":	-41.2936935424,	"longitude":	173.2470855712}	.

Message	Integrity
Many	messaging	systems	specify	checksums	or	other	forms	of	message	integrity
checking.	In	Signal	K	we	assume	a	reliable	transport	will	guarantee	a	valid	message.
This	is	true	of	TCP/IP	and	some	other	transports	but	not	always	the	case.	For	other
transports	(eg	RS232	serial)	a	specific	extended	data	format	will	apply,	which	is	suited	to
that	transport.	Hence	at	the	message	level	no	checksum	or	other	tests	need	to	be	made.

Full	and	Delta	Models

14

Encoding/Decoding
The	JSON	message	format	is	supported	across	most	programming	environments	and
can	be	handled	with	any	convenient	library.

On	micro-controllers	with	limited	RAM	it	is	wise	to	read	and	write	using	streaming	rather
than	hold	the	whole	message	in	precious	RAM.	There	is	an	implementation	of	Signal	K
JSON	streaming	on	an	Arduino	Mega	(4K	RAM)	in	the	related	Freeboard	project.

Full	and	Delta	Models

15

https://github.com/rob42/FreeboardMega/tree/signal_k_dev/lib/SignalK

Multiple	Values	for	a	Key
There	are	two	use	cases	for	multiple	data:

Multiple	instances	of	a	common	device	-	eg	two	engines	or	multiple	batteries
Multiple	devices	providing	duplicate	data	-	multiple	values	for	the	same	Signal	K	key
from	different	sensors,	eg	COG	from	both	compass	and	gps	or	multiple	depth
sounders

Multiple	instances	of	a	common	device
Some	parts	of	the	Signal	K	schema	are	device	oriented.

For	example	in	electrical	domain	you	have	the	concept	of	multiple	batteries.	Each
battery	has	multiple,	common	quantities	like	voltage,	current	and	temperature.	Here	we
have	chosen	to	organise	the	Signal	K	data	model	hierarchy	by	instance:	multiple
batteries	are	represented	as	for	example		electrical.batteries.starter		and
	electrical.batteries.house	.	Then	underneath	that	prefix	you	have	the	different
properties	and	quantities.

This	organisation	allows	a	user	interface	to	organise	the	individual	readings	in	meaningul
groups	and	you	can	query	all	the	values	related	to	that	piece	of	equipment	via	REST
API.	It	maintains	the	primary	requirement	that	a	given	data	value	have	a	fixed	and
unique	uri,	but	gives	flexibility	in	the	structure	and	complexities	of	data.

The	same	device	centric	organisation	is	used	in		propulsion		subschema,	where	the
most	common	use	case	is	having	dual	engine	setup	with		propulsion.port		and
	propulsion.starboard	.

The	values		starter	,		house	,		port		and		starboard		are	examples	and	not	specified	in
the	schema.	You	are	free	to	use	application	specific	values	within	the	regexp	specified	in
the	JSON	schema.

Multiple	devices	providing	duplicate	data

It	is	quite	possible	for	a	key	value	to	come	from	more	than	one	device.	eg	position
(lat/lon)	could	come	from	several	gps	enabled	devices,	and	multiple	depth	sounders	are
not	uncommon.	We	need	a	consistent	way	to	handle	this.

Multiple	Values

16

All	the	incoming	values	may	well	be	valid	in	their	own	context,	and	it	is	feasible	that	all	of
them	may	be	wanted,	for	instance,	displaying	depth	under	each	hull	on	a	catamaran.

Hence	discarding	or	averaging	is	not	a	solution,	and	since	signalk	is	unable	to	derive	the
best	way	to	handle	multiple	values	it	must	always	fall	to	a	default	action,	with	human
over-ride	when	needed.

The	solution	presented	below	has	flaws.	See
https://github.com/SignalK/specification/issues/48	for	discussion.

In	signal	K	we	can	leverage	the	above	method	and	simply	store	all	the	devices	in	the
tree	under	the	main	item,	and	have	the	main	items		source		reference	the	options.	Lets
consider	this	for		courseOverGroundTrue	

If	its	the	first	value	for	the	key,	it	becomes	the	default	value	and	looks	like	this:

{

		"vessels":	{

				"self":	{

						"navigation":	{

								"courseOverGroundTrue":	{

										"value":	102.29,

										"source":	"vessels.self.sources.n2k.actisense-115-129026"

								}

						},

						"sources":	{

								"n2k":	{

										"actisense-115-129026":	{

												"value":	102.29,

												"bus":	"/dev/actisense",

												"timestamp":	"2014-08-15-16:	00:	01.083",

												"src":	"115",

												"pgn":	"129026"

										}

								}

						}

				}

		}

}

It	has	come	from	device		vessels.self.sources.n2k.actisense-115-129026	,	where	further
details	can	be	found.

Multiple	Values

17

https://github.com/SignalK/specification/issues/48

If	another	value	with	different	source	arrives,	we	add	the	source	with	a	unique	name,	so
both	values	are	in	there	-	if	its	our	preferred	source	(from	persistent	config)	we	auto-
switch	to	it,	otherwise	we	just	record	it.	It	look	like	this:

{

		"vessels":	{

				"self":	{

						"navigation":	{

								"courseOverGroundTrue":	{

										"timestamp":	"2014-08-15-16:	00:	01.083",

										"value":	102.29,

										"source":	"vessels.self.sources.n2k.actisense-115-129026"

								}

						},

						"sources":	{

								"n2k":	{

										"actisense-115-129026":	{

												"value":	102.29,

												"bus":	"/dev/actisense",

												"timestamp":	"2014-08-15-16:	00:	01.083",

												"src":	"115",

												"pgn":	"129026"

										},

										"actisense-201-130577":	{

												"value":	102.29,

												"bus":	"/dev/actisense",

												"timestamp":	"2014-08-15-16:	00:	00.085",

												"src":	"201",

												"pgn":	"130577"

										}

								}

						}

				}

		}

}

Rules

Now	simple	rules	can	apply	to	obtain	the	default,	or	any	specific	value:

The	implementation	must	ensure	that	the		key.value		holds	an	appropriate	value.
This	will	be	easy	if	there	is	only	one,	and	will	probably	be	user	configured	if	more.
If	the		source		value	is		string		then	it	is	a	reference	key	to	the	source	object,	and
can	be	a	relative	or	absolute	signalk	key.
The		source		(as	a	reference	string)	also	provides	a	mechanism	to	handle
deprecated	keys.

Multiple	Values

18

If	the		source		value	is	a		json	object		then	it	holds	meta	data	on	the	source	of	the
value.
Alternate	sources	must	be	discovered	manually,	or	by	implementation	specific
meta-data.

To	see	all	the	entries,	use	the	REST	api	or	subscribe	to	the	parent	object.	A	given
device	may	choose	to	subscribe	to	a	specific	entry	in	the	object,	allowing	multiple
displays	of	the	key,	or	users	of	the	various	values.	The	'list'	verb	used	in	a	query
message	can	provide	available	keys.

Unique	names

The	identifier	for	each	device	should	be	unique	within	the	server,	and	possibly	be
constructed	as	follows:

n2k:	producerid-sourceid-pgn	(producer	id	from	server	configuration,	others	from	n

2k	data)	-	NOTE:	will	change,	currently	under	discussion.

nmea0183:	producerid-talkerid-sentence	(like	n2k)

signalk:	any	valid	string	matching	regex	[a-zA-Z0-9-].	eg	alphabet,	hyphens,	and	0

	to	9

(The	nmea0183	talker	id	is	not	in	the	schema	as	I	write	this,	it	will	be	added	shortly)

Multiple	Values

19

Metadata
The	Use	Cases

Let's	assume	we	have	engine1.rpm	as	a	key/value	in	Signal	K.	We	want	to	display	it	on
our	dashboard,	and	monitor	alarms	for	temp,	oil,	rpm	etc.

We	can	drop	a	generic	dial	gauge	on	our	dash	and	display	rpm,	but	it	can't	know
maxRpm,	or	alarms	unless	its	an	engine-specific	gauge,	and	knows	where	to	look	in	the
Signal	K	schema.	So	we	will	end	up	with	a	profusion	of	role	specific	gauges	to	maintain.
We	also	have	non	standard	key	names	for	max,	min,	high,	low,	etc.	which	pollute	the
schema.

Currently	the	Signal	K	server	has	a	set	of	specific	alarm	keys.	These	grow	over	time	and
are	becoming	awkward.	The	server	can	only	monitor	these	specific	keys	at	present	as
there	is	no	mechanism	for	arbitrary	alarm	definition.

Metadata	for	a	Data	Value

Each	data	key	should	have	an	optional		.meta		object.	This	holds	data	in	a	standard	way
which	enables	the	max/min/alarm	and	display	to	be	automatically	derived.

{

		"displayName":	"Tachometer,	Engine	1",

		"shortName":	"RPM",

		"warnMethod":	"visual",

		"warnMessage":	"any	text",

		"alarmMethod":	"sound",

		"alarmMessage":	"any	text",

		"zones":	[

				{"lower":0.0,"upper":500,"state":"alarm",	"message":"Stopped	or	very	slow	Rpm"

},

				{"lower":500,"upper":3000,"state":"normal",	"message":""},

				{"lower":3000,"upper":3500,"state":"warn",	"message":"Approaching	maximum	rpm"

},

				{"lower":3500,"upper":9999,"state":"alarm",	"message":"Exceeding	maximum	rpm"}

]

}

Metadata

20

Since	the	settings	object	is	always	the	same,	the	tachometer	can	now	limit	its	range,	and
display	green,	yellow,	and	red	sectors.	The	generic	gauge	can	now	perform	this	role,
with	correct	labels	etc.

The	alarms	problem	is	also	improved,	as	the	server	can	run	a	background	process	to
monitor	any	key	that	has	a		.meta		object,	and	raise	a	generic	alarm	event.	By	recursing
the	tree	the	alarm	monitoring	can	find	the	source	(engine1),	giving	the	alarm	context.
See	[[Alarm	Handling]]

The	alarms	functionality	then	becomes	generic,	and	grows	with	the	spec.	This	is	may	be
the	case	for	other	functionality	also.

Default	Configuration

Other	than	a	few	standard	keys	it	is	unlikely	that	the		.meta		can	have	global	defaults,	as
it	is	very	vessel	specific	(e.g.	a	sail	boat	will	have	speeds	from	0-15kts,	a	ski	boat	will
have	0-50kts).	So	the	values	will	have	to	be	configured	by	the	user	on	the	individual
vessel	as	required.

It	is	probably	possible	to	have	profiles	that	set	a	range	of	default		.meta	,	e.g.	sail	vessel,
or	motor	vessel,	and	if	two	vessels	have	the	same	engine,	then	the	engine	profiles	will
also	tend	to	be	the	same.

Alarm	Management

An	alarm	watch	is	set	by	setting	the		meta.zones		array	appropriately.	A	background
process	on	the	server	checks	for	alarm	conditions	on	any	attribute	with	a		meta.zones	
array.	If	the	keys	value	is	within	a	zone	the	server	sets	an	alarm	key	similar	to
	vessels.self.notifications.[original_key_suffix]	,	eg	an	alarm	set	on
	vessels.self.navigation.courseOverGroundTrue		will	become
	vessels.self.notifications.navigation.courseOverGroundTrue	.

The	object	found	at	this	key	should	contain	the	following:

{

		"message":	"any	text",

		"state":	"[normal|alert|warn|alarm|emergency]"

}

Other	Benefits

Metadata

21

The	common	profiles	should	be	exportable	and	importable.	This	would	allow
manufacturers	or	other	users	to	create	profiles	for	specific	products	or	use	cases,	which
could	then	be	imported	to	a	vessel.

This	may	also	have	possibilities	for	race	control	or	charter	management.	For	instance	a
limit	on	lat/lon	would	raise	an	'Out	of	Bounds'	email	on	a	charter	vessel.

A	lot	of	the	current	max/min/alarm	values	could	be	removed	to	simplify	and	standardise
the	spec.

Metadata

22

Permissions	Model
The	permissions	model	for	Signal	K	is	based	on	the	UNIX	file	permissions	model.	This
was	first	developed	in	the	late	1970's	and	is	still	perfectly	suited	to	the	internet	today,	so
its	got	to	be	a	pretty	sound	model!.

So	we	adapted	it	for	Signal	K.	See	http://www.tutorialspoint.com/unix/unix-file-
permission.htm

Each	key	in	Signal	K	has	an	optional		_attr		value.

"vessels":	{

				"self":{

													//the	usual	signal	k	keys,	navigation,	environment,	etc

							"_attr":{																	//	filesystem	specific	data,	eg	security,	possibl

y	more	later

																"_mode":	640,									//	unix	style	permissions,	often	written	in	

`owner:group:other`	form,	`-rw-r-----`

																"_owner"	:	"self",				//	owner,	surprisingly.	The	user	who	created

	the	item,	sometimes	a	virtual	user	like	'self'

																"_group":	"self"						//	group

													}

											}

								}

By	default	the		vessels.self		key	has	the	above		_attr	.	This	effectively	means	that	only
the	current	vessels	'owner'	can	read	and	write	from	this	key	or	any	of	its	sub-keys.	It	also
allows	users	in	group		self		to	read	the	data.	This	provides	a	way	to	give	additional
programs	or	users	read-only	access.	In	the	above	case	an	external	user	connecting	from
outside	the	vessel	and	requesting	vessel	data	would	receive		{}	,	eg	nothing.

Note:keys	beginning	with		_		are	always	stripped	from	signal	k	messages

Since	the	above	is	a	default,	Signal	K	devices	that	lack	the	resources	to	implement
security	should	always	be	installed	behind	a	suitable	gateway	that	can	provide	security.
Again,	the	simplest	security	is	the	default	read-write	only	within	the	local	vessel	(typically
the	current	network).	This	makes	a	basic	implementation	as	simple	as	possible.

The	permissions	apply	recursively	to	all	sub-keys,	unless	specifically	overwritten.	You
can	only	provide	a	narrowing	change	in	permissions,	eg	less	than	the	parent	directory.
In	the	above	case	if	the	permissions	for		vessels.self.navigation.position		were	set	to

Permissions

23

http://www.tutorialspoint.com/unix/unix-file-permission.htm

	"_mode"	:	644	,	it	would	have	no	effect	as	access	is	blocked	at	the		vessels.self		key.
The		vessels.self		_attr	must	now	also	be		"_mode"	:	644	,	and	all	its	other	subkeys
explicitly	set	to		"_mode"	:	640	

Hence	setting	complex	permissions	are	likely	beyond	the	typical	user.	For	this	reason
we	believe	there	should	be	a	choice	of	default	permission	'templates'	for	the	signal	K
tree.	Users	would	select	their	preference	from	a	config	screen.	A	paranoid	user	may
prefer	the	above	setup,	another	may	chose	to	allow	basic	data	similar	to	AIS	(position,
cog,	speed,	etc),	and	others	may	expose	much	more.

Templates	also	allow	sharing	of	data	for	specific	uses	or	needs,	like	a	social	group,	or	a
marina.

Exposing	everything	("_mode"	:	666)	would	be	dangerous	-	it	would	potentially	allow
external	users	to	gain	control	of	the	vessels	systems,	however	it	is	useful	for	demos	and
software	development.	All	signal	K	implementations	should	always	consider	the	potential
danger	of	such	permissions,	and	protect	users	if	possible.

The	implementation	of	proper	security	is	the	responsibility	of	the	Signal	K
software	implementation	provider.

By	manipulating	the		_attr		values	for	the	Signal	K	keys,	and	creating	suitable	users	and
groups	a	sophisticated	and	well	proven	security	model	for	vessel	data	can	be	created.

Permissions

24

Ports,	Urls	and	Versioning
Short	Names

	self		refers	to	the	current	vessel.	Normally	used	in		vessels.self...	.

Ports

The	Signal	K	HTTP	and	WebSocket	services	SHOULD	be	found	on	the	usual	HTTP/S
ports	(80	or	443).	The	services	SHOULD	be	found	on	the	same	port,	but	may	be
configured	for	independent	ports	and	MAY	be	configured	for	ports	other	than	HTTP/S.

A	Signal	K	server	MAY	offer	Signal	K	over	TCP	or	UDP,	these	services	SHOULD	be	on
port	55555[1].

If	an	alternate	port	is	needed	it	SHOULD	be	an	arbitrary	high	port	in	the	range	49152–
65535[2].

URL	Prefix

The	Signal	K	applications	start	from	the		/signalk		root.	This	provides	some	protection
against	name	collisions	with	other	applications	on	the	same	server.	Therefore	the	Signal
K	entry	point	will	always	be	found	by	loading		http(s)://«host»:«port»/signalk	.

Versioning

The	version(s)	of	the	Signal	K	API	that	a	server	supports	SHALL	be	available	as	a	JSON
object	available	at		/signalk	:

Ports,	Urls	and	Versioning

25

{

				"endpoints":	{

								"v1":	{

												"version":	"1.1.2",

												"signalk-http":	"http://192.168.1.2/signalk/v1/api/",

												"signalk-ws":	"ws://192.168.1.2:34567/signalk/v1/stream"

								},

								"v3":	{

												"version":	"3.0",

												"signalk-http":	"signalk/v3/api/",

												"signalk-ws":	"ws://192.168.1.2/signalk/v3/stream",

												"signalk-tcp":	"tcp://192.168.1.2:34568"

								}

				}

}

This	response	is	defined	by	the		discovery.json		schema.	In	this	example,	the	server
supports	two	versions	of	the	specification:		1.1.2		and		3.0	.	For	each	version,	the
server	indicates	which	transport	protocols	it	supports	and	the	URL	that	can	be	used	to
access	that	protocol's	endpoint;	in	the	example,	the		1.1.2		REST	endpoint	is	located	at
	http://192.168.1.2/signalk/v1/api/	.	Clients	should	use	one	of	these	published
endpoints	based	on	the	protocol	version	they	wish	to	use.

The	server	must	only	return	valid	URLs	and	should	use	IANA	standard	protocol	names
such	as		http	.	However,	a	server	may	support	unofficial	protocols	and	may	return
additional	protocol	names;	for	example,	the	response	above	indicates	the	server
supports	a		signalk-tcp		stream	over	TCP	at	on	port		34568	.

A	server	may	return	relative	URIs	that	the	client	must	resolve	against	the	base	of	the
original	request.

Ports,	Urls	and	Versioning

26

REST/HTTP	API:	/signalk/v1/api/

Note	the	trailing	slash	in	the	path.

The	base	URL	MUST	provide	a	Signal	K	document	that	is	valid	according	to	the	full
Signal	K	schema	specification.	The	contents	SHOULD	be	all	the	current	values	of	the
data	items	the	server	knows.

If	the	path	following	the	base	is	a	valid	Signal	K	path		GET		MUST	retrieve	the	Signal	K
branch	named	by	the	path;	e.g.
	/signalk/v1/api/vessels/123456789/navigation/speedThroughWater		returns

{

				"value":	2.55,

				"source":	{

								"type":	"NMEA0183",

								"src":	"VHW",

								"label":	"signalk-parser-nmea0183"

				},

				"timestamp":	"2015-08-31T05:45:36.000Z"

}

REST	API

27

Streaming	WebSocket	API:	/signalk/v1/stream

Initiates	a	WebSocket	connection	that	will	start	streaming	the	server's	updates	as	Signal
K	delta	messages.	You	can	specify	the	contents	of	the	stream	by	using	a	specific	URL:

ws://hostname/signalk/v1/stream?subscribe=self
ws://hostname/signalk/v1/stream?subscribe=all
ws://hostname/signalk/v1/stream?subscribe=none

With	no	query	parameter	the	default	is		self	,	which	will	stream	the	data	related	to	the
	self		object.		all		will	stream	all	the	updates	the	server	sees	and		none		will	stream
only	the	heartbeat,	until	the	client	issues	subscribe	messages	in	the	WebSocket	stream.

If	a	server	does	not	support	some	streaming	options	listed	in	here	it	must	respond	with
http	status	code		501	Not	Implemented	.

See	Subscription	Protocol	for	more	details.

Connection	Hello

Upon	connection	a	'hello'	message	is	sent	as	follows:

{

		"version":	"1.1.2",

		"timestamp":	"2015-04-13T01:13:50.524Z",

		"self":	"123456789"

}

Streaming	WebSocket	API

28

Discovery	and	Connection
Establishment

Service	Discovery
A	Signal	K	server	SHOULD	advertise	its	services	using	DNS	Service	Discovery	(DNS-
SD)	via	Mutlicast	DNS	(mDNS);	also	known	as	Bonjour.	The	server	MUST	provide	DNS
Service	(SRV)	Records	and	Text	(TXT)	Records	describing	the	Signal	K	interfaces	it
provides.	These	service	identifiers	are:

	_http._tcp		for	the	server's	web	interface
	_signalk-http._tcp		for	the	Signal	K	REST	API
	_signalk-ws._tcp		for	the	WebSocket	data	stream

If	a	server	is	providing	Signal	K	via	secure	versions	of	HTTP	or	WebSockets	then	they
MUST	be	able	to	provide	a	redirection	to	the	secure	versions	of	these	protocols.

If	a	Signal	K	server	is	using	DNS-SD,	it	MUST	provide	the	following	parameters
(key/value	pairs)	in	the	TXT	record	portion	of	the	DNS-SD	advertisement:

	txtvers		is	a	US-ASCII	decimal	number	identifying	the	version	of	the	DNS-SD
record.	Currently,	this	MUST	have	a	value	of	1
	roles		specifies	which	roles	the	server	is	capable	of	providing.	See	Roles	below	for
details

The	server	MAY	provide	the	following	values:

	self		is	the	unique	identifier	of	the	vessel	using	the	URN	format	specified	for	the
	uuid		field	in	the	Signal	K	schema.	It	may	also	use	the	URN	format	specified	for	the
	mmsi		field	in	the	Signal	K	schema	if	it	exists.
	swname		is	the	name	of	the	Signal	K	server	software,	e.g.	signalk-server-node
	swvers		is	the	version	of	the	Signal	K	server	software

An	example	DNS-SD	record	set	is	shown	below.

Discovery	&	Connection	Establishment

29

https://tools.ietf.org/html/rfc6763
https://en.wikipedia.org/wiki/SRV_record
https://en.wikipedia.org/wiki/TXT_record

Service	data	for	service	'signalk-http'	of	type	'_signalk-http._tcp'	in	domain	'lo

cal'	on	4.0:

				Host	10-1-1-40.local	(10.1.1.40),

				port	80,

				TXT	data:	[

								'txtvers=1',

								'roles=master,main',

								'self=urn:mrn:signalk:uuid:c0d79334-4e25-4245-8892-54e8ccc8021d',

								'swname=signalk-server',

								'swvers=0.1.23'

]

Service	data	for	service	'signalk-ws'	of	type	'_signalk-ws._tcp'	in	domain	'local'

	on	4.0:

				Host	10-1-1-40.local	(10.1.1.40),

				port	3000,

				TXT	data:	[

								'txtvers=1',

								'roles=master,main',

								'self=urn:mrn:signalk:uuid:c0d79334-4e25-4245-8892-54e8ccc8021d',

								'swname=signalk-server',

								'swvers=0.1.23'

]

These	records	are	advertising	a	Signal	K	server	with	the	HTTP	REST	API	on	port	80
and	the	WebSocket	data	stream	on	port	3000.	The	server	identifies	as	having	the
	master		and		main		roles	and	provides	a		self		identifier	as	a	UUID.

Roles

The	four	possible	values	for		roles		are		master	,		slave	,		main	,	and		aux	.	These	are
defined	below.

Master

	master		is	the	canonical	source	for	identity	and	configuration	information	for	the	entire
vessel.

If	there	is	only	one	master	on	the	vessel,	then	it	should	also	provide	the	main	role.	The
combination	of	master	and	main	informs	a	client	that	this	server	is	actively	providing
identifying	information.

Main	and	Aux

Discovery	&	Connection	Establishment

30

If	there	are	more	than	one	masters	on	the	vessel,	EXACTLY	ONE	server	should
advertise	both	master	and	main.	All	other	masters	should	advertise	master	and	aux.
Clients	should	only	use	the	master	aux	servers	for	identifying	information	if	the	master
main	is	not	available.

Any	server	identifying	as	master	MUST	be	able	to	provide	at	a	minimum	the	unique
identifier	(self)	for	the	vessel.

Slave

Any	server	providing	the		slave		role	should	retrieve	identity	and	configuration
information	from	the	master	server.	Slave	servers	MAY	provide	configuration	and
identity	information	for	themselves,	but	this	identity	MUST	NOT	be	considered	valid	for
the	entire	vesssel.

Main	and	Aux

The	use	of	main	and	aux	have	not	been	defined	for	the	slave	role	at	this	time.

Connection	Establishment
Using	the	information	above	a	web	client	or	HTTP	capable	device	can	discover	and
connect	to	a	Signal	K	server	using	the	following	process:

Query	for	Signal	K	services	using	mDNS
Connect	to	the	host	and	port	advertised	as	'signalk-http'	via	HTTP	(e.g.
	http://10.1.1.40:80)
Per	the	Ports,	Urls	and	Versioning	section,	make	a	GET	request	for		/signalk		to
retrieve	a	JSON	object	containing	an		endpoints		JSON	object
Make	further	REST	calls	for	more	specific	data,	or	open	a	websocket	connection	to
start	streaming	updates.

Discovery	&	Connection	Establishment

31

Discovery	&	Connection	Establishment

32

Discovery	&	Connection	Establishment

33

Subscription	Protocol
Subcription	protocol	is	currently	available	only	on	the	Java	server.

Introduction

By	default	a	Signal	K	server	will	provide	a	new	WebSocket	client	with	a	delta	stream	of
the		vessels.self		record,	as	updates	are	received	from	sources.	E.g.
	/signalk/v1/stream		will	provide	the	following	delta	stream,	every	time	the	log	value
changes	.

{

		"context":	"vessels",

			"updates":	[{

						"source":	{

								"pgn":	"128275",

								"device":	"/dev/actisense",

								"timestamp":	"2014-08-15-16:00:05.538",

								"src":	"115"

						},

						"values":	[

								{

										"path":	"navigation.logTrip",

										"value":	43374

								},

								{

										"path":	"navigation.log",

										"value":	17404540

								}]

					}

]

}

Below	we	refer	to	WebSockets,	but	the	same	process	works	in	the	same	way	over
any	transport.	E.g.	for	a	raw	TCP	connection	the	connection	causes	the	above
message	to	be	sent,	and	sending	the	subscribe	messages	will	have	the	same
effect	as	described	here.

This	can	be	a	lot	of	messages,	many	you	may	not	need,	especially	if		vessel.self		has
many	sensors,	or	other	data	sources.	Generally	you	will	want	to	subscribe	to	a	much
smaller	range	of	data.

Subscription	Protocol

34

First	you	will	want	to	unsubscribe	from	the	current	default	(or	you	may	have	already
connected	with		ws://hostname/signalk/v1/stream?subscribe=none).	To	unsubscribe	all
create	an		unsubscribe		message	with	wildcards	and	send	the	message	over	the
websocket	connection:

{

		"context":	"*",

		"unsubscribe":	[

				{

						"path":	"*"

				}

]

}

To	subscribe	to	the	required	criteria	send	a	suitable	subscribe	message:

{

		"context":	"vessels.self",

		"subscribe":	[

				{

						"path":	"navigation.speedThroughWater",

						"period":	1000,

						"format":	"delta",

						"policy":	"ideal",

						"minPeriod":	200

				},

				{

						"path":	"navigation.logTrip",

						"period":	10000

				}

]

}

	path=[path.to.key]		is	appended	to	the	context	to	specify	subsets	of	the	context.
The	path	value	can	use	the	wildcard		*	.	A	wildcard	in	the	middle	of	a	path
(propulsion/*/oilTemperature)	allows	any	value	for	that	part	and	a	wildcard	at	the
end	(propulsion/port/*)	matches	all	paths	beginning	with	the	specified	prefix.

The	following	are	optional,	included	above	only	for	example	as	it	uses	defaults	anyway:

	period=[millisecs]		becomes	the	transmission	rate,	e.g.	every		period/1000	
seconds.	Default=1000
	format=[delta|full]		specifies	delta	or	full	format.	Default:	delta
	policy=[instant|ideal|fixed]	.	Default:	ideal

Subscription	Protocol

35

	instant		means	send	all	changes	as	fast	as	they	are	received,	but	no	faster
than		minPeriod	.	With	this	policy	the	client	has	an	immediate	copy	of	the
current	state	of	the	server.
	ideal		means	use		instant		policy,	but	if	no	changes	are	received	before
	period	,	then	resend	the	last	known	values.eg	send	changes	asap,	but	send
the	value	every		period		millisecs	anyway,	whether	changed	or	not.
	fixed		means	simply	send	the	last	known	values	every		period	.

	minPeriod=[millisecs]		becomes	the	fastest	message	transmission	rate	allowed,
e.g.	every		minPeriod/1000		seconds.	This	is	only	relevant	for	policy='instant'	to	avoid
swamping	the	client	or	network.

You	can	subscribe	to	multiple	data	keys	multiple	times,	from	multiple	apps	or	devices.
Each	app	or	device	simply	subscribes	to	the	data	it	requires,	and	the	server	and/or	client
implementation	may	combine	subscriptions	to	avoid	duplication	as	it	prefers	on	a	per
connection	basis.	At	the	same	time	it	is	good	practice	to	open	the	minimum	connections
necessary,	for	instance	one	websocket	connection	shared	bewteen	an	instrument	panel
with	many	gauges,	rather	then	one	websocket	connection	per	gauge.

When	data	is	required	once	only,	or	upon	request	the		subscribe/unsubscribe		method
should	not	be	used.	If	the	client	is	http	capable	the	REST	api	is	a	good	choice,	or	use
	get/list/put		messages	over	websockets	or	tcp.

The		get/list/put		messages	work	in	the	same	way	as	their		GET/PUT		REST
equivalents,	returning	a	json	result	for	the	requested	path.

Use	Cases	and	Proposed	Solutions

Local	boat	individual	instruments

A	gauge-type	display	for	just	one	or	a	few	data	items	for	the	'self'	vessel	should	be	able
to	specify	that	it	only	wants	those	items	for	the	self	vessel.

This	can	be	achieved	by	a	default	WebSocket	connection		/signalk/v1/stream?
subcribe=none	,	then	sending	a	JSON	message:

Subscription	Protocol

36

{

		"context":	"vessels.self",

		"subscribe":	[

				{

						"path":	"environment.depth.belowTransducer"

				},

				{

						"path":	"navigation.speedThroughWater"

				}

]

}

The	JSON	format	is	also	viable	over	a	simple	TCP	or	serial	transport,	and	is	therefore
supported	as	the	primary	subscription	method.

Map	display	with	all	known	vessel	positions	&	directions,
served	over	3G	cellular	connection

{

		"context":	"vessels.*",

		"subscribe":	[

				{

						"path":	"navigation.position",

						"period":	120000,

						"policy":	"fixed"

				},

				{

						"path":	"navigation.courseOverGround",

						"period":	120000,

						"policy":	"fixed"

				}

]

}

The	result	is	a	delta	message	of	the	Signal	K	data	with	just	position	and
courseOverGround	branches	for	all	known	vessels,	sent	every	2	minutes	(120	seconds)
even	if	no	data	has	been	updated.

Position	of	a	certain	vessel,	immediately	it	changes,	but
once	per	minute	at	most

Subscription	Protocol

37

{

		"context":	"vessels.230029970",

		"subscribe":	[

				{

						"path":	"navigation.position",

						"minPeriod":	60000,

						"policy":	"instant"

				}

]

}

The	result	will	be	delta	position	messages	for	vessel	230029970,	broadcast	whenever	it
changes,	but	with	minimum	interval	of	60	seconds.	Messages	are	delayed	to	meet	the
minimum	interval	with	newer	messages	overriding	the	previous	message	in	the	buffer.

Subscription	Protocol

38

Alarm,	Alert,	and	Notification	Handling
Handling	alarms,	alerts,	and	notifications	in	Signal	K	is	a	multi-stage	process.	Alarms,
alerts	and	notifications	are	all	handled	the	same	way,	and	are	all	referred	to	as	alarms
below.

We	need	a	flexible	model	to	define	alarm	conditions,	and	a	standard	way	to	announce
and	record	them.

Alarm	Process
Define	alarm	states	as	zones	in	the	meta	object	attached	to	any	Signal	K	value.	See
[[Metadata	for	Data	Values]]
If	the	value	is	within	an	alarm	zone	raise	the	defined	alarm.
If	the	value	goes	out	of	the	zone,	remove	the	alarm	by	setting	its	value	to	null
Alarms	are	raised	by	placing	an	alarm	object	in	the		vessels.self.notifications	
tree

Expected	implementation	behaviour
The	server	(or	device)	should	monitor	the	current	value	and	compare	it	to	the
defined	zones.
If	a	value	enters	an	alarm	zone,	then	a	key	is	written	to
	vessels.self.notifications..	

If	a	value	leaves	an	alarm	zone,	then	the	key	is	removed	from
	vessels.self.notifications..	

Alarms	raised	are	monitored	by	an	alarm	process	on	the	server,	which	takes
appropriate	action,	sounding	alarms,	or	displaying	messages.
Clients	interested	in	alarms	can	subcribe	to	the		vessels.self.notifications...		tree
in	the	usual	way	and	be	informed	of	alarms	in	the	same	way	as	normal	signalk	keys.
When	an	alarms	is	removed,	a	delta	should	be	sent	to	subscribers	with	the	path	and
a	null	value.

Example

Notifications

39

eg	If	we	exceed	our	anchor	alarm	radius:		vessels.self.navigation.anchor.currentRadius	
enters		vessels.self.navigation.anchor.currentRadius.meta.zones[[50,500,	"alarm",
"Dragging	anchor!"]],	

The	alarm	is	:		vessels.self.notifications.navigation.anchor.currentRadius	

The	alarm	object	is

{

		"method":	["sound"],

		"state":	"alarm",

		"message":	"Dragging	anchor!",

		"timestamp":	..,

		"source":	{..}

}

The	server	alarm	manager	will	see	this	new	entry	and	turn	on	the	alarm.	Using	a
manager	process	allows	flexibility	in	situations	where	multiple	alarms	are	triggered	and
your	vessel	is	a	mass	of	flashing	and	beeping.	eg	A	single	'Pause'	button	can	give	you
5-10	minutes	to	take	action,	stopping	annoying	noise,	and	removing	popup	messages
from	screens.

Since	the		vessels.self.notifications		tree	mirrors	the	other	data	in	the	signal	k	model,
we	can	selectively	watch	or	react	to	specific	branches	or	keys.	When	displaying	multiple
alarms	a	screen	can	also	sort	and	filter	them.

Other	Alarms
Above	we	have	discussed	monitoring	existing	values	and	raising	alarms.	There	are	other
alarms	that	must	be	considered,	eg	MOB,	fire,	sinking	etc,	and	misc	alerts	"GPS	signal
lost".etc.

The		vessels.[uuid].notifications		tree	is	the	same	as	any	other	Signal	k	branch.	Keys
can	be	added	and	removed	as	required	in	the	usual	way.	Since	the	branch	is	being
monitored	we	only	need	to	add	a	key	of	any	sort	to	create	a	suitable	alarm.

In	the	case	of	an	emergency,	create	a	unique	key:	The	alarm	is	:		vessels.
[uuid].notifications.[alarm.key]	

The	alarm	object	is

Notifications

40

{

		"method":	["visual",	"sound"],

		"state":	"emergency",

		"message":	"Man	Overboard!",

		...

}

Alarm	objects	that	have	been	raised	this	way	must	be	cleared	manually,	or	by	the
process	that	created	them.	You	can	use	any	suitable	path,	keeping	in	mind	the	context
of	the	alarm.

eg	In	the	case	of	an	alert,	create	a	unique	key	by	generating	a	path:	The	alarm	is	:
	vessels.[uuid].notifications.navigation.gnss	

The	alarm	object	is

{

		"method":	["visual"],

		"state":	"alert",

		"message":	"GPS	signal	lost!",

		...

}

Well	Known	Names

Some	alarms	are	especially	important,	eg	MOB.	This	is	a	list	of	keys	for	special	alarms.

	..notifications.mob.*	

	..notifications.fire.*	

	..notifications.sinking.*	

	..notifications.flooding.*	

	..notifications.collision.*	

	..notifications.grounding.*	

	..notifications.listing.*	

	..notifications.adrift.*	

	..notifications.piracy.*	

	..notifications.abandon.*	

An	example	to	send	an	MOB	alarm	from	an	N2K	source,	the	gateway	would	convert	and
send	something	like:

Notifications

41

{

		"context":	"vessels.urn:mrn:signalk:uuid:c0d79334-4e25-4245-8892-54e8ccc8021d",

		"updates":	[

				{

						"source":	{

									...

								"timestamp":	"2014-08-15-16:00:05.538",

						},

						"values":	[

								{

										"path":	"notifications.mob",

										"value":	{

												"message":	"MOB",

												"state":	"emergency",

												"method":	["visual",	"sound"]

										}

								}

]

				}

		}

}

The	resulting	full	signalk	tree	would	be:

{

		"vessels":	{

				"urn:mrn:signalk:uuid:c0d79334-4e25-4245-8892-54e8ccc8021d":	{

						"notifications":	{

								"mob":{

										"message":	"MOB",

										"timestamp":	"2014-04-10T08:33:53Z",

										"source":	{

													...

										},

										"state":	"emergency",

										"method":	["visual",	"sound"]

								}

						}

				}

		}

}

To	clear	the	alarm	condition,	send:

Notifications

42

{

		"context":	"vessels.urn:mrn:signalk:uuid:c0d79334-4e25-4245-8892-54e8ccc8021d",

		"updates":	[

				{

						"source":	{

								...

								"timestamp":	"2014-08-15-16:00:05.538",

						},

						"values":	[

								{

										"path":	"notifications.mob",

										"value":	null

								}

]

				}

]

}

Multiple	cases	of	the	same	alarm
Should	multiple	cases	of	the	same	alarm	occur	(eg	a	gps	loses	signal,	then	a	second
gps	loses	signal)	the	alarms	are	handled	the	same	as	any	other	multiple	values	in
signalk.	However	alarms	will	tend	to	be	re-issued	whenever	the	underlying	data
changes.

The	servers	alarm	monitoring	processes	are	expected	to	be	smart	enough	to	know	that
the	anchor	alarm	is	triggered,	and	its	not	necessary	to	raise	a	second	copy	of	the	same
alarm,	after	all	there	is	only	one	boat	dragging!

This	may	be	handled	differently	for	notifications.	It	may	be	useful	to	know	that	your	gps's
are	all	failing	intermittently,	or	that	.	Hence	the	handling	of	multiple	copies	of	alarms	is	an
implementation	issue,	and	may	vary.

The	key	should	be	unique
If	we	have	an	alarm		vessels.self.notifications.navigation.anchor.currentRadius		and
we	attempt	to	write	another	higher	in	the	same	tree	at		vessels.self.notifications		it
must	not	replace	or	remove	the	existing	alarm.	Since	the		meta.zones		structure	is	only
valid	on	signalk	leaf	values	this	occurs	naturally	in	most	circumstances.	But	it	is	possible
to	set	an	alarm	value	arbitrarily	(eg	MOB)	and	care	should	be	taken	in	implementations
that	keys	do	not	overwrite	existing	paths.

Notifications

43

Notifications

44

Background	and	Design	Rationale

Arrays	Are	Evil
In	Signal	K	every	datapoint	should	have	a	predictable	and	unique	uri	(address).	What	we
want	to	maintain	is	to	know	that	vessels.self.data.temp	is	always	at	that	uri,	and	what	the
json	form	is.	So	if	its	an	array	thats	workable.	If	its	a	json	object	with	many	instance
keys,	each	which	has	a	arbitrary	name	and	the	same	internal	structure	that	works	too.

In	fact	the	two	forms	represent	the	same	data	but	have	different	uris	and	thats	the	crux.
Essentially	the	first	is	data.item[collection],	where	data.item[1]	is	instance	1,	eg	the
second	(0	based)	item	in	the	array.

This	is	no	different	from	data.item	as	the	json	object,	and	data.item.1	as	the	instance,
with	the	name	'1'.

From	a	code	perspective	its	similar	too,	the	object	just	has	an	array	of	keys.	But	with
objects	data.temp.instanceName.value	is	reliable	and	always	the	same.

Does	that	apply	for	data.temp[1].value?	eg	how	do	you	reliably	get	data.temp.air.value
with	arrays?

In	signalk	or	java	or	js,	if	I	have	two	values	in	the	array,	and	add	one,	then	remove	the
first,	suddenly	the	subscriptions	are	all	wrong.	The	temp[1]	did	point	to	the	second	(0
based)	object	in	the	array,	but	after	removing	the	first	its	now	temp[0].	Subscriptions	to
temp[1]	are	now	broken.

For	an	object	temp[air]	always	gets	the	temp.air.	Adding	or	removing	other	keys	does
not	affect	'air'.

The	array	problem	can	be	overcome	by	programming	-	but	basically	thats	just	fixing	a
problem	that	can	be	easily	avoided	by	not	using	arrays.

Background	and	Design	Rationale

45

This	is	a	quick	start	for	any-one	that	would	like	to	contribute.	Its	roughly	from	technically
unskilled	to	skilled,	top	to	bottom.	Dont	be	afraid	to	ask	for	help.	Each	task	will	probably
start	with	a	new	thread	for	more	details	on	the	Google	groups
(https://groups.google.com/forum/#!forum/signalk).	Be	patient,	civil,	and	persistent	:-)

Completely	unskilled	at	boat	electronics:

Join	https://groups.google.com/forum/#!forum/signalk	-	as	the	user	base	grows,	so
does	awareness.
Tell	others,	spread	the	word
Fly	a	Signal	K	flag	from	your	boat
If	you	have	special	skills	(eg	motors,	batteries,	navigation,	etc)	help	us	extend	the
Signal	K	protocol	by	identifying	what	we	need	to	cover.
Ask	manufacturers	about	Signal	K	support
Ask	questions	about	what	you	dont	understand,	and	collate	the	answers	for	us	to
put	on	the	website.

Can	do	own	installs,	handyman,	but	not	IT	skilled.

Try	an	install	of	Raspberry	Pi	and	WIFI,	document	exactly	how	you	did	it,	so	others
can	follow.

Website	or	documentation	skills

Help	us	maintain	the	website,	and	improve	the	documents

Good	computer	skills,	but	not	programming

Download	and	try	the	java	server	(https://github.com/SignalK/signalk-server-java)
and	node	server	(https://github.com/SignalK/signalk-server-node)	and	the	various
apps	and	clients.	Help	test	and	identify	issues,	help	improve	documents	so	others
can	follow	easier.
Help	with	User	manuals!

Systems	engineer

Help	other	users,	help	with	scripts,	develop	and	maintain	install	processes,
managing	our	web	sites,	etc.
Examples:

Create	Debian	packages	of	the	Signal	K	software	for	easy	installation	to
Raspbian

Software	developer

How	Can	I	Help?

46

https://groups.google.com/forum/#!forum/signalk
https://groups.google.com/forum/#!forum/signalk
https://github.com/SignalK/signalk-server-java
https://github.com/SignalK/signalk-server-node

Download	and	test/fix	our	stuff,	add	improvements,	join	the	team	and	help	code,
develop	support	in	your	own	software.

Microprocessors

Improve	our	Arduino	stuff,	add	your	own,	incorporate	Signal	K	into	your	products.

How	Can	I	Help?

47

Signal	K	Data	Model	Reference
This	document	is	meant	as	the	human-oriented	reference	to	accompany	the	actual
JSON	Schema	specification	and	is	produced	from	the	schema	files.	Any	changes	to	the
reference	material	below	should	be	made	to	the	original	schema	files.

Signal	K	uses	SI	units	almost	everywhere,	with	the	exception	of	geographic	coordinates.
The	following	units	are	in	use:

A	:	Ampere
C	:	Coulomb
Hz	:	Hertz
ISO-8601	(UTC)	:	ISO-8601	string	representation	of	time	in	Universal	Time
Coordinated
J	:	Joule
K	:	Kelvin
Pa	:	Pascal
V	:	Volt
W	:	Watt
deg	:	Degree
kg	:	Kilogram
m	:	Meter
m/s	:	Meters	per	second
m2	:	Square	meter
m3	:	Cubic	meter
m3/s	:	Cubic	meter	per	second
rad	:	Radian
rad/s	:	Radian	per	second
ratio	:	Ratio
s	:	Second

Keys

/self

Appendix	A:	Keys	Reference

48

https://en.wikipedia.org/wiki/International_System_of_Units

Description:	This	holds	the	key	(UUID,	MMSI	or	URL)	of	this	vessel,	the	actual	data	is
in	the	vessels	array.

/vessels

Description:	A	wrapper	object	for	vessel	objects,	each	describing	vessels	in	range,
including	this	vessel.

/vessels/<RegExp>

Title:	vessel

Description:	An	object	describing	an	individual	vessel.	It	should	be	an	object	in	vessels,
named	using	MMSI	or	a	UUID

/vessels/<RegExp>/url

Description:	URL	based	identity	of	the	vessel,	if	available.

/vessels/<RegExp>/mmsi

Description:	MMSI	number	of	the	vessel,	if	available.

/vessels/<RegExp>/uuid

Description:	A	unique	Signal	K	flavoured	maritime	resource	identifier,	assigned	by	the
server.

/vessels/<RegExp>/name

Description:	The	common	name	of	the	vessel

Appendix	A:	Keys	Reference

49

/vessels/<RegExp>/flag

Description:	The	country	of	ship	registration,	or	flag	state	of	the	vessel

/vessels/<RegExp>/port

Description:	The	home	port	of	the	vessel

/vessels/<RegExp>/registrations

Description:	The	various	registrations	of	the	vessel.

/vessels/<RegExp>/registrations/imo

Description:	The	IMO	number	of	the	vessel.

/vessels/<RegExp>/registrations/national

Description:	The	national	registration	number	of	the	vessel.

/vessels/<RegExp>/registrations/national/<RegExp>

Description:	This	regex	pattern	is	used	for	validating	the	identifier	for	the	registration

/vessels/<RegExp>/registrations/national/<RegExp>/count
ry

Description:	The	ISO	3166-2	country	code.

Appendix	A:	Keys	Reference

50

/vessels/<RegExp>/registrations/national/<RegExp>/regist
ration

Description:	The	registration	code

/vessels/<RegExp>/registrations/national/<RegExp>/descr
iption

Description:	The	registration	description

/vessels/<RegExp>/registrations/local

Description:	A	local	or	state	registration	number	of	the	vessel.

/vessels/<RegExp>/registrations/local/<RegExp>

Description:	This	regex	pattern	is	used	for	validating	the	identifier	for	the	registration

/vessels/<RegExp>/registrations/local/<RegExp>/registrati
on

Description:	The	registration	code

/vessels/<RegExp>/registrations/local/<RegExp>/descripti
on

Description:	The	registration	description

/vessels/<RegExp>/registrations/other

Description:	Other	registration	or	permits	for	the	vessel.

Appendix	A:	Keys	Reference

51

/vessels/<RegExp>/registrations/other/<RegExp>

Description:	This	regex	pattern	is	used	for	validating	the	identifier	for	the	registration

/vessels/<RegExp>/registrations/other/<RegExp>/registrat
ion

Description:	The	registration	code

/vessels/<RegExp>/registrations/other/<RegExp>/descript
ion

Description:	The	registration	description

/vessels/<RegExp>/communication

Title:	communication

Description:	Communication	data	including	Radio,	Telephone,	E-Mail,	etc.

/vessels/<RegExp>/communication/callsignVhf

Description:	Callsign	for	VHF	communication

/vessels/<RegExp>/communication/callsignHf

Description:	Callsign	for	HF	communication

/vessels/<RegExp>/communication/phoneNumber

Description:	Phone	number	of	skipper

Appendix	A:	Keys	Reference

52

/vessels/<RegExp>/communication/emailHf

Description:	Email	address	to	be	used	for	HF	email	(Winmail,	Airmail,	Sailmail)

/vessels/<RegExp>/communication/email

Description:	Regular	email	for	the	skipper

/vessels/<RegExp>/communication/satPhoneNumber

Description:	Satellite	phone	number	for	vessel.

/vessels/<RegExp>/communication/skipperName

Description:	Full	name	of	the	skipper	of	the	vessel.

/vessels/<RegExp>/communication/crewNames

Description:	Array	with	the	names	of	the	crew

/vessels/<RegExp>/environment

Title:	environment

Description:	Environmental	data	measured	locally	including	Depth,	Wind,	Temp,	etc.

/vessels/<RegExp>/environment/outside

Description:	[missing]

Appendix	A:	Keys	Reference

53

/vessels/<RegExp>/environment/outside/temperature

Units:	K	(Kelvin)

Description:	Current	outside	air	temperature

/vessels/<RegExp>/environment/outside/dewPointTemper
ature

Units:	K	(Kelvin)

Description:	Current	outside	dew	point	temperature

/vessels/<RegExp>/environment/outside/apparentWindCh
illTemperature

Units:	K	(Kelvin)

Description:	Current	outside	apparent	wind	chill	temperature

/vessels/<RegExp>/environment/outside/theoreticalWindC
hillTemperature

Units:	K	(Kelvin)

Description:	Current	outside	theoretical	wind	chill	temperature

/vessels/<RegExp>/environment/outside/heatIndexTempe
rature

Units:	K	(Kelvin)

Description:	Current	outside	heat	index	temperature

/vessels/<RegExp>/environment/outside/pressure

Appendix	A:	Keys	Reference

54

Units:	Pa	(Pascal)

Description:	Current	outside	air	ambient	pressure

/vessels/<RegExp>/environment/outside/humidity

Units:	ratio	(Ratio)

Description:	Current	outside	air	relative	humidity

/vessels/<RegExp>/environment/inside

Description:	[missing]

/vessels/<RegExp>/environment/inside/temperature

Units:	K	(Kelvin)

Description:	Current	inside	air	temperature

/vessels/<RegExp>/environment/inside/humidity

Units:	ratio	(Ratio)

Description:	Current	inside	air	relative	humidity

/vessels/<RegExp>/environment/inside/engineRoom

Description:	Current	engine	room	air	temperature

/vessels/<RegExp>/environment/inside/engineRoom/temp
erature

Appendix	A:	Keys	Reference

55

Units:	K	(Kelvin)

Description:	Temperature

/vessels/<RegExp>/environment/inside/mainCabin

Description:	Current	main	cabin	air	temperature

/vessels/<RegExp>/environment/inside/mainCabin/temper
ature

Units:	K	(Kelvin)

Description:	Temperature

/vessels/<RegExp>/environment/inside/refrigerator

Description:	Current	refrigerator	temperature

/vessels/<RegExp>/environment/inside/refrigerator/tempe
rature

Units:	K	(Kelvin)

Description:	Temperature

/vessels/<RegExp>/environment/inside/freezer

Description:	Current	freezer	temperature

/vessels/<RegExp>/environment/inside/freezer/temperatur
e

Appendix	A:	Keys	Reference

56

Units:	K	(Kelvin)

Description:	Temperature

/vessels/<RegExp>/environment/inside/heating

Description:	Current	heating	temperature

/vessels/<RegExp>/environment/inside/heating/temperatu
re

Units:	K	(Kelvin)

Description:	Temperature

/vessels/<RegExp>/environment/water

Description:	[missing]

/vessels/<RegExp>/environment/water/temperature

Units:	K	(Kelvin)

Description:	Current	water	temperature

/vessels/<RegExp>/environment/water/salinity

Units:	ratio	(Ratio)

Description:	Water	salinity

/vessels/<RegExp>/environment/water/liveWell

Appendix	A:	Keys	Reference

57

Description:	Current	livewell	temperature

/vessels/<RegExp>/environment/water/liveWell/temperatu
re

Units:	K	(Kelvin)

Description:	Temperature

/vessels/<RegExp>/environment/water/baitWell

Description:	Current	baitwell	air	temperature

/vessels/<RegExp>/environment/water/baitWell/temperatu
re

Units:	K	(Kelvin)

Description:	Temperature

/vessels/<RegExp>/environment/depth

Title:	depth

Description:	Depth	related	data

/vessels/<RegExp>/environment/depth/belowKeel

Units:	m	(Meter)

Description:	Depth	below	keel

/vessels/<RegExp>/environment/depth/belowTransducer

Appendix	A:	Keys	Reference

58

Units:	m	(Meter)

Description:	Depth	below	Transducer

/vessels/<RegExp>/environment/depth/belowSurface

Units:	m	(Meter)

Description:	Depth	from	surface

/vessels/<RegExp>/environment/depth/transducerToKeel

Units:	m	(Meter)

Description:	Depth	from	the	transducer	to	the	bottom	of	the	keel

/vessels/<RegExp>/environment/depth/surfaceToTransdu
cer

Units:	m	(Meter)

Description:	Depth	transducer	is	below	the	water	surface

/vessels/<RegExp>/environment/current

Title:	current

Description:	Direction	and	strength	of	current	affecting	the	vessel

/vessels/<RegExp>/environment/tide

Title:	tide

Description:	Tide	data

Appendix	A:	Keys	Reference

59

/vessels/<RegExp>/environment/tide/heightHigh

Units:	m	(Meter)

Description:	Next	high	tide	height	relative	to	lowest	astronomical	tide	(LAT/Chart
Datum)

/vessels/<RegExp>/environment/tide/heightNow

Units:	m	(Meter)

Description:	The	current	tide	height	relative	to	lowest	astronomical	tide	(LAT/Chart
Datum)

/vessels/<RegExp>/environment/tide/heightLow

Units:	m	(Meter)

Description:	The	next	low	tide	height	relative	to	lowest	astronomical	tide	(LAT/Chart
Datum)

/vessels/<RegExp>/environment/tide/timeLow

Units:	ISO-8601	(UTC)	(ISO-8601	string	representation	of	time	in	Universal	Time
Coordinated)

Description:	Time	of	the	next	low	tide	in	UTC

/vessels/<RegExp>/environment/tide/timeHigh

Units:	ISO-8601	(UTC)	(ISO-8601	string	representation	of	time	in	Universal	Time
Coordinated)

Description:	Time	of	next	high	tide	in	UTC

Appendix	A:	Keys	Reference

60

/vessels/<RegExp>/environment/heave

Units:	m	(Meter)

Description:	Vertical	movement	of	the	vessel	due	to	waves

/vessels/<RegExp>/environment/wind

Title:	wind

Description:	Wind	data.

/vessels/<RegExp>/environment/wind/angleApparent

Units:	rad	(Radian)

Description:	Apparent	wind	angle,	negative	to	port

/vessels/<RegExp>/environment/wind/angleTrueGround

Units:	rad	(Radian)

Description:	True	wind	angle	based	on	speed	over	ground,	negative	to	port

/vessels/<RegExp>/environment/wind/angleTrueWater

Units:	rad	(Radian)

Description:	True	wind	angle	based	on	speed	through	water,	negative	to	port

/vessels/<RegExp>/environment/wind/directionChangeAla
rm

Units:	rad	(Radian)

Description:	The	angle	the	wind	needs	to	shift	to	raise	an	alarm

Appendix	A:	Keys	Reference

61

/vessels/<RegExp>/environment/wind/directionTrue

Units:	rad	(Radian)

Description:	The	wind	direction	relative	to	true	north

/vessels/<RegExp>/environment/wind/directionMagnetic

Units:	rad	(Radian)

Description:	The	wind	direction	relative	to	magnetic	north

/vessels/<RegExp>/environment/wind/speedTrue

Units:	m/s	(Meters	per	second)

Description:	Wind	speed	over	water	(as	calculated	from	speedApparent	and	vessel's
speed	through	water)

/vessels/<RegExp>/environment/wind/speedOverGround

Units:	m/s	(Meters	per	second)

Description:	Wind	speed	over	ground	(as	calculated	from	speedApparent	and	vessel's
speed	over	ground)

/vessels/<RegExp>/environment/wind/speedApparent

Units:	m/s	(Meters	per	second)

Description:	Apparent	wind	speed

/vessels/<RegExp>/environment/time

Appendix	A:	Keys	Reference

62

Description:	A	time	reference	onboard.

/vessels/<RegExp>/environment/time/millis

Title:	Epoch	time

Description:	Milliseconds	since	the	UNIX	epoch	(1970-01-01	00:00:00)

/vessels/<RegExp>/environment/time/timezone

Title:	Timezone	offset

Description:	Timezone	offset	in	hours	and	minutes	(-)hhmm

/vessels/<RegExp>/environment/mode

Description:	Mode	of	the	vessel	based	on	the	current	conditions.	Can	be	combined	with
navigation.state	to	control	vessel	signals	eg	switch	to	night	mode	for	instrumentation	and
lights,	or	make	sound	signals	for	fog.

/vessels/<RegExp>/navigation

Title:	navigation

Description:	Navigation	data	including	Position,	Course	to	next	WP	information,	etc.

/vessels/<RegExp>/navigation/lights

Title:	Navigation	lights

Description:	Current	state	of	the	vessels	navigation	lights

Appendix	A:	Keys	Reference

63

/vessels/<RegExp>/navigation/courseOverGroundMagneti
c

Units:	rad	(Radian)

Description:	Course	over	ground	(magnetic)

/vessels/<RegExp>/navigation/courseOverGroundTrue

Units:	rad	(Radian)

Description:	Course	over	ground	(true)

/vessels/<RegExp>/navigation/courseRhumbline

Title:	Course

Description:	Course	information	computed	with	Rhumbline

/vessels/<RegExp>/navigation/courseRhumbline/crossTra
ckError

Units:	m	(Meter)

Description:	The	distance	from	the	vessel's	present	position	to	the	closest	point	on	a
line	(track)	between	previousPoint	and	nextPoint.	A	negative	number	indicates	that	the
vessel	is	currently	to	the	left	of	this	line	(and	thus	must	steer	right	to	compensate),	a
positive	number	means	the	vessel	is	to	the	right	of	the	line	(steer	left	to	compensate).

/vessels/<RegExp>/navigation/courseRhumbline/bearingT
rackTrue

Units:	rad	(Radian)

Description:	The	bearing	of	a	line	between	previousPoint	and	nextPoint,	relative	to	true
north.

Appendix	A:	Keys	Reference

64

/vessels/<RegExp>/navigation/courseRhumbline/bearingT
rackMagnetic

Units:	rad	(Radian)

Description:	The	bearing	of	a	line	between	previousPoint	and	nextPoint,	relative	to
magnetic	north.

/vessels/<RegExp>/navigation/courseRhumbline/activeRo
ute

Description:	[missing]

/vessels/<RegExp>/navigation/courseRhumbline/activeRo
ute/href

Description:	A	reference	(URL)	to	the	presently	active	route,	in	resources.

/vessels/<RegExp>/navigation/courseRhumbline/activeRo
ute/estimatedTimeOfArrival

Units:	ISO-8601	(UTC)	(ISO-8601	string	representation	of	time	in	Universal	Time
Coordinated)

Description:	The	estimated	time	of	arrival	at	the	end	of	the	current	route

/vessels/<RegExp>/navigation/courseRhumbline/activeRo
ute/startTime

Units:	ISO-8601	(UTC)	(ISO-8601	string	representation	of	time	in	Universal	Time
Coordinated)

Description:	The	time	this	route	was	activated

Appendix	A:	Keys	Reference

65

/vessels/<RegExp>/navigation/courseRhumbline/nextPoin
t

Description:	The	point	on	earth	the	vessel's	presently	navigating	towards

/vessels/<RegExp>/navigation/courseRhumbline/previous
Point

Description:	The	point	on	earth	the	vessel's	presently	navigating	from

/vessels/<RegExp>/navigation/courseGreatCircle

Title:	Course

Description:	Course	information	computed	with	Great	Circle

/vessels/<RegExp>/navigation/courseGreatCircle/crossTr
ackError

Units:	m	(Meter)

Description:	The	distance	from	the	vessel's	present	position	to	the	closest	point	on	a
line	(track)	between	previousPoint	and	nextPoint.	A	negative	number	indicates	that	the
vessel	is	currently	to	the	left	of	this	line	(and	thus	must	steer	right	to	compensate),	a
positive	number	means	the	vessel	is	to	the	right	of	the	line	(steer	left	to	compensate).

/vessels/<RegExp>/navigation/courseGreatCircle/bearing
TrackTrue

Units:	rad	(Radian)

Description:	The	bearing	of	a	line	between	previousPoint	and	nextPoint,	relative	to	true
north.

Appendix	A:	Keys	Reference

66

/vessels/<RegExp>/navigation/courseGreatCircle/bearing
TrackMagnetic

Units:	rad	(Radian)

Description:	The	bearing	of	a	line	between	previousPoint	and	nextPoint,	relative	to
magnetic	north.

/vessels/<RegExp>/navigation/courseGreatCircle/activeR
oute

Description:	[missing]

/vessels/<RegExp>/navigation/courseGreatCircle/activeR
oute/href

Description:	A	reference	(URL)	to	the	presently	active	route,	in	resources.

/vessels/<RegExp>/navigation/courseGreatCircle/activeR
oute/estimatedTimeOfArrival

Units:	ISO-8601	(UTC)	(ISO-8601	string	representation	of	time	in	Universal	Time
Coordinated)

Description:	The	estimated	time	of	arrival	at	the	end	of	the	current	route

/vessels/<RegExp>/navigation/courseGreatCircle/activeR
oute/startTime

Units:	ISO-8601	(UTC)	(ISO-8601	string	representation	of	time	in	Universal	Time
Coordinated)

Description:	The	time	this	route	was	activated

Appendix	A:	Keys	Reference

67

/vessels/<RegExp>/navigation/courseGreatCircle/nextPoi
nt

Description:	The	point	on	earth	the	vessel's	presently	navigating	towards

/vessels/<RegExp>/navigation/courseGreatCircle/previou
sPoint

Description:	The	point	on	earth	the	vessel's	presently	navigating	from

/vessels/<RegExp>/navigation/racing

Description:	[missing]

/vessels/<RegExp>/navigation/racing/startLineStb

Description:	[missing]

/vessels/<RegExp>/navigation/racing/startLinePort

Description:	[missing]

/vessels/<RegExp>/navigation/racing/distanceStartline

Units:	m	(Meter)

Description:	The	current	distance	to	the	start	line

/vessels/<RegExp>/navigation/racing/timeToStart

Units:	s	(Second)

Description:	Time	left	before	start

Appendix	A:	Keys	Reference

68

/vessels/<RegExp>/navigation/racing/timePortDown

Units:	s	(Second)

Description:	Time	to	arrive	at	the	start	line	on	port,	turning	downwind

/vessels/<RegExp>/navigation/racing/timePortUp

Units:	s	(Second)

Description:	Time	to	arrive	at	the	start	line	on	port,	turning	upwind

/vessels/<RegExp>/navigation/racing/timeStbdDown

Units:	s	(Second)

Description:	Time	to	arrive	at	the	start	line	on	starboard,	turning	downwind

/vessels/<RegExp>/navigation/racing/timeStbdUp

Units:	s	(Second)

Description:	Time	to	arrive	at	the	start	line	on	starboard,	turning	upwind

/vessels/<RegExp>/navigation/racing/distanceLayline

Units:	m	(Meter)

Description:	The	current	distance	to	the	layline

/vessels/<RegExp>/navigation/magneticVariation

Units:	rad	(Radian)

Description:	The	magnetic	variation	(declination)	at	the	current	position

Appendix	A:	Keys	Reference

69

/vessels/<RegExp>/navigation/magneticVariationAgeOfSe
rvice

Units:	s	(Second)

Description:	Seconds	since	the	1st	Jan	1970	that	the	variation	calculation	was	made

/vessels/<RegExp>/navigation/destination

Title:	destination

Description:	The	intended	destination	of	this	trip

/vessels/<RegExp>/navigation/destination/eta

Units:	ISO-8601	(UTC)	(ISO-8601	string	representation	of	time	in	Universal	Time
Coordinated)

Description:	ISO-8601	(UTC)	string	representing	date	and	time.

/vessels/<RegExp>/navigation/destination/waypoint

Description:	UUID	of	destination	waypoint

/vessels/<RegExp>/navigation/gnss

Title:	gnss

Description:	Global	satellite	navigation	meta	information

/vessels/<RegExp>/navigation/gnss/methodQuality

Description:	Quality	of	the	satellite	fix

Appendix	A:	Keys	Reference

70

/vessels/<RegExp>/navigation/gnss/integrity

Description:	Integrity	of	the	satellite	fix

/vessels/<RegExp>/navigation/gnss/satellites

Description:	Number	of	satellites

/vessels/<RegExp>/navigation/gnss/antennaAltitude

Units:	m	(Meter)

Description:	Altitude	of	antenna

/vessels/<RegExp>/navigation/gnss/horizontalDilution

Description:	Horizontal	Dilution	of	Precision

/vessels/<RegExp>/navigation/gnss/positionDilution

Description:	Positional	Dilution	of	Precision

/vessels/<RegExp>/navigation/gnss/geoidalSeparation

Description:	Difference	between	WGS84	earth	ellipsoid	and	mean	sea	level

/vessels/<RegExp>/navigation/gnss/differentialAge

Units:	s	(Second)

Description:	Age	of	DGPS	data

Appendix	A:	Keys	Reference

71

/vessels/<RegExp>/navigation/gnss/differentialReference

Description:	ID	of	DGPS	base	station

/vessels/<RegExp>/navigation/headingMagnetic

Units:	rad	(Radian)

Description:	Current	magnetic	heading	of	the	vessel

/vessels/<RegExp>/navigation/headingTrue

Units:	rad	(Radian)

Description:	The	current	true	heading	of	the	vessel

/vessels/<RegExp>/navigation/position

Description:	The	position	of	the	vessel	in	2	or	3	dimensions	(WGS84	datum)

/vessels/<RegExp>/navigation/attitude

Title:	Attitude

Description:	Vessel	attitude:	roll,	pitch	and	yaw

/vessels/<RegExp>/navigation/rateOfTurn

Units:	rad/s	(Radian	per	second)

Description:	Rate	of	turn	(+ve	is	change	to	starboard)

Appendix	A:	Keys	Reference

72

/vessels/<RegExp>/navigation/speedOverGround

Units:	m/s	(Meters	per	second)

Description:	Vessel	speed	over	ground

/vessels/<RegExp>/navigation/speedThroughWater

Units:	m/s	(Meters	per	second)

Description:	Vessel	speed	through	the	water

/vessels/<RegExp>/navigation/log

Units:	m	(Meter)

Description:	Log	value

/vessels/<RegExp>/navigation/logTrip

Units:	m	(Meter)

Description:	Trip	log	value

/vessels/<RegExp>/navigation/state

Title:	state

Description:	Current	navigational	state	of	the	vessel

/vessels/<RegExp>/navigation/anchor

Title:	anchor

Description:	The	anchor	data,	for	anchor	watch	etc

Appendix	A:	Keys	Reference

73

/vessels/<RegExp>/navigation/anchor/maxRadius

Units:	m	(Meter)

Description:	Radius	of	anchor	alarm	boundary.	The	distance	from	anchor	to	the	center
of	the	boat

/vessels/<RegExp>/navigation/anchor/currentRadius

Units:	m	(Meter)

Description:	Current	distance	to	anchor

/vessels/<RegExp>/navigation/anchor/position

Description:	The	actual	anchor	position	of	the	vessel	in	3	dimensions,	probably	an
estimate	at	best

/vessels/<RegExp>/navigation/datetime

Description:	[missing]

/vessels/<RegExp>/propulsion

Title:	propulsion

Description:	Engine	data,	each	engine	identified	by	a	unique	name	i.e.	Port_Engine

/vessels/<RegExp>/propulsion/<RegExp>

Description:	This	regex	pattern	is	used	for	validation	of	the	identifier	for	the	propulsion
unit

Appendix	A:	Keys	Reference

74

/vessels/<RegExp>/propulsion/<RegExp>/label

Description:	Human	readable	label	for	the	propulsion	unit

/vessels/<RegExp>/propulsion/<RegExp>/state

Description:	The	current	state	of	the	engine

/vessels/<RegExp>/propulsion/<RegExp>/revolutions

Units:	Hz	(Hertz)

Description:	Engine	revolutions	(x60	for	RPM)

/vessels/<RegExp>/propulsion/<RegExp>/temperature

Units:	K	(Kelvin)

Description:	Engine	temperature

/vessels/<RegExp>/propulsion/<RegExp>/oilTemperature

Units:	K	(Kelvin)

Description:	Oil	temperature

/vessels/<RegExp>/propulsion/<RegExp>/oilPressure

Units:	Pa	(Pascal)

Description:	Oil	pressure

Appendix	A:	Keys	Reference

75

/vessels/<RegExp>/propulsion/<RegExp>/alternatorVoltag
e

Units:	V	(Volt)

Description:	Alternator	voltage

/vessels/<RegExp>/propulsion/<RegExp>/runTime

Units:	s	(Second)

Description:	Total	running	time	for	engine	(Engine	Hours	in	seconds)

/vessels/<RegExp>/propulsion/<RegExp>/coolantTempera
ture

Units:	K	(Kelvin)

Description:	Coolant	temperature

/vessels/<RegExp>/propulsion/<RegExp>/coolantPressur
e

Units:	Pa	(Pascal)

Description:	Coolant	pressure

/vessels/<RegExp>/propulsion/<RegExp>/boostPressure

Units:	Pa	(Pascal)

Description:	Engine	boost	(turbo,	supercharger)	pressure

/vessels/<RegExp>/propulsion/<RegExp>/engineLoad

Appendix	A:	Keys	Reference

76

Units:	ratio	(Ratio)

Description:	Engine	load	ratio,	0<=ratio<=1,	1	is	100%

/vessels/<RegExp>/propulsion/<RegExp>/engineTorque

Units:	ratio	(Ratio)

Description:	Engine	torque	ratio,	0<=ratio<=1,	1	is	100%

/vessels/<RegExp>/propulsion/<RegExp>/transmission

Description:	[missing]

/vessels/<RegExp>/propulsion/<RegExp>/transmission/ge
ar

Description:	[missing]

/vessels/<RegExp>/propulsion/<RegExp>/transmission/ge
arRatio

Units:	ratio	(Ratio)

Description:	Gear	ratio,	engine	rotations	per	propeller	shaft	rotation

/vessels/<RegExp>/propulsion/<RegExp>/transmission/oil
Temperature

Units:	K	(Kelvin)

Description:	Oil	temperature

Appendix	A:	Keys	Reference

77

/vessels/<RegExp>/propulsion/<RegExp>/transmission/oil
Pressure

Units:	Pa	(Pascal)

Description:	Oil	pressure

/vessels/<RegExp>/propulsion/<RegExp>/drive

Description:	[missing]

/vessels/<RegExp>/propulsion/<RegExp>/drive/type

Description:	[missing]

Enum	values:

saildrive
shaft
outboard
jet
pod
other

/vessels/<RegExp>/propulsion/<RegExp>/drive/trimState

Units:	ratio	(Ratio)

Description:	Trim/tilt	state,	0<=ratio<=1,	1	is	100%	up

/vessels/<RegExp>/propulsion/<RegExp>/drive/thrustAngl
e

Units:	rad	(Radian)

Description:	Current	thrust	angle	for	steerable	drives,	+ve	is	thrust	to	Starboard

Appendix	A:	Keys	Reference

78

/vessels/<RegExp>/propulsion/<RegExp>/drive/propeller

Description:	[missing]

/vessels/<RegExp>/propulsion/<RegExp>/fuel

Description:	[missing]

/vessels/<RegExp>/propulsion/<RegExp>/fuel/type

Description:	Fuel	type

Enum	values:

diesel
petrol
electric
coal/wood
other

/vessels/<RegExp>/propulsion/<RegExp>/fuel/used

Units:	m3	(Cubic	meter)

Description:	Used	fuel	since	last	reset.	Resetting	is	at	user	discretion

/vessels/<RegExp>/propulsion/<RegExp>/fuel/pressure

Units:	Pa	(Pascal)

Description:	Fuel	pressure

/vessels/<RegExp>/propulsion/<RegExp>/fuel/rate

Appendix	A:	Keys	Reference

79

Units:	m3/s	(Cubic	meter	per	second)

Description:	Fuel	rate	of	consumption

/vessels/<RegExp>/propulsion/<RegExp>/fuel/economyRa
te

Units:	m3/s	(Cubic	meter	per	second)

Description:	Economy	fuel	rate	of	consumption

/vessels/<RegExp>/propulsion/<RegExp>/fuel/averageRat
e

Units:	m3/s	(Cubic	meter	per	second)

Description:	Average	fuel	rate	of	consumption

/vessels/<RegExp>/propulsion/<RegExp>/exhaustTemper
ature

Units:	K	(Kelvin)

Description:	Exhaust	temperature

/vessels/<RegExp>/electrical

Title:	electrical

Description:	Electrical	data,	each	electrical	device	indentified	by	a	unique	name	i.e.
Battery_1

/vessels/<RegExp>/electrical/batteries

Description:	[missing]

Appendix	A:	Keys	Reference

80

/vessels/<RegExp>/electrical/batteries/<RegExp>

Title:	Battery	keyed	by	instance	id

Description:	Batteries,	one	or	many,	within	the	vessel

/vessels/<RegExp>/electrical/batteries/<RegExp>/associat
edBus

Description:	Name	of	BUS	device	is	associated	with

/vessels/<RegExp>/electrical/batteries/<RegExp>/voltage

Units:	V	(Volt)

Description:	[missing]

/vessels/<RegExp>/electrical/batteries/<RegExp>/current

Units:	A	(Ampere)

Description:	[missing]

/vessels/<RegExp>/electrical/batteries/<RegExp>/tempera
ture

Title:	temperature

Description:	Additional	/	unique	temperatures	associated	with	a	battery

/vessels/<RegExp>/electrical/batteries/<RegExp>/tempera
ture/limitDischargeLower

Appendix	A:	Keys	Reference

81

Units:	K	(Kelvin)

Description:	Operational	minimum	temperature	limit	for	battery	discharge

/vessels/<RegExp>/electrical/batteries/<RegExp>/tempera
ture/limitDischargeUpper

Units:	K	(Kelvin)

Description:	Operational	maximum	temperature	limit	for	battery	discharge

/vessels/<RegExp>/electrical/batteries/<RegExp>/tempera
ture/limitRechargeLower

Units:	K	(Kelvin)

Description:	Operational	minimum	temperature	limit	for	battery	recharging

/vessels/<RegExp>/electrical/batteries/<RegExp>/tempera
ture/limitRechargeUpper

Units:	K	(Kelvin)

Description:	Operational	maximum	temperature	limit	for	battery	recharging

/vessels/<RegExp>/electrical/batteries/<RegExp>/capacity

Title:	capacity

Description:	[missing]

/vessels/<RegExp>/electrical/batteries/<RegExp>/capacity
/nominal

Units:	J	(Joule)

Appendix	A:	Keys	Reference

82

Description:	The	capacity	of	battery	as	specified	by	the	manufacturer

/vessels/<RegExp>/electrical/batteries/<RegExp>/capacity
/actual

Units:	J	(Joule)

Description:	The	measured	capacity	of	battery.	This	may	change	over	time	and	will
likely	deviate	from	the	nominal	capacity.

/vessels/<RegExp>/electrical/batteries/<RegExp>/capacity
/remaining

Units:	J	(Joule)

Description:	Capacity	remaining	in	battery

/vessels/<RegExp>/electrical/batteries/<RegExp>/capacity
/dischargeLimit

Units:	J	(Joule)

Description:	Minimum	capacity	to	be	left	in	the	battery	while	discharging

/vessels/<RegExp>/electrical/batteries/<RegExp>/capacity
/stateOfCharge

Units:	ratio	(Ratio)

Description:	State	of	charge,	1	=	100%

/vessels/<RegExp>/electrical/batteries/<RegExp>/capacity
/stateOfHealth

Appendix	A:	Keys	Reference

83

Units:	ratio	(Ratio)

Description:	State	of	Health,	1	=	100%

/vessels/<RegExp>/electrical/batteries/<RegExp>/capacity
/dischargeSinceFull

Units:	C	(Coulomb)

Description:	Cumulative	discharge	since	battery	was	last	full

/vessels/<RegExp>/electrical/batteries/<RegExp>/capacity
/timeRemaining

Units:	s	(Second)

Description:	Time	to	discharge	to	discharge	limit	at	current	rate

/vessels/<RegExp>/electrical/batteries/<RegExp>/lifetime
Discharge

Units:	C	(Coulomb)

Description:	Cumulative	charge	discharged	from	battery	over	operational	lifetime	of
battery

/vessels/<RegExp>/electrical/batteries/<RegExp>/lifetime
Recharge

Units:	C	(Coulomb)

Description:	Cumulative	charge	recharged	into	battery	over	operational	lifetime	of
battery

/vessels/<RegExp>/electrical/inverters

Appendix	A:	Keys	Reference

84

Description:	[missing]

/vessels/<RegExp>/electrical/inverters/<RegExp>

Title:	Inverter

Description:	DC	to	AC	inverter,	one	or	many,	within	the	vessel

/vessels/<RegExp>/electrical/inverters/<RegExp>/dc

Title:	DC	Quantities

Description:	DC	common	quantities

/vessels/<RegExp>/electrical/inverters/<RegExp>/dc/asso
ciatedBus

Description:	Name	of	BUS	device	is	associated	with

/vessels/<RegExp>/electrical/inverters/<RegExp>/dc/volta
ge

Units:	V	(Volt)

Description:	[missing]

/vessels/<RegExp>/electrical/inverters/<RegExp>/dc/curre
nt

Units:	A	(Ampere)

Description:	[missing]

Appendix	A:	Keys	Reference

85

/vessels/<RegExp>/electrical/inverters/<RegExp>/dc/temp
erature

Title:	temperature

Description:	[missing]

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac

Title:	AC	Quantities

Description:	AC	equipment	common	quantities

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac/asso
ciatedBus

Description:	Name	of	BUS	source	is	assocated	with	(if	applicable,	may	=	NULL)

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac/lineN
eutralVoltage

Units:	V	(Volt)

Description:	RMS	voltage	measured	between	phase	and	neutral.

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac/lineLi
neVoltage

Units:	V	(Volt)

Description:	RMS	voltage	measured	between	phases

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac/curre
nt

Appendix	A:	Keys	Reference

86

Units:	A	(Ampere)

Description:	RMS	current

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac/frequ
ency

Units:	Hz	(Hertz)

Description:	AC	frequency.

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac/reacti
vePower

Units:	W	(Watt)

Description:	Reactive	power

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac/powe
rFactor

Description:	Power	factor

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac/powe
rFactorLagging

Description:	Lead/lag	status.

Enum	values:

leading
lagging
error
not	available

Appendix	A:	Keys	Reference

87

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac/realP
ower

Units:	W	(Watt)

Description:	Real	power.

/vessels/<RegExp>/electrical/inverters/<RegExp>/ac/appa
rentPower

Units:	W	(Watt)

Description:	Apparent	power.

/vessels/<RegExp>/electrical/inverters/<RegExp>/mode

Description:	Mode	of	inverter

/vessels/<RegExp>/electrical/chargers

Description:	[missing]

/vessels/<RegExp>/electrical/chargers/<RegExp>

Title:	Charger

Description:	Battery	charger

/vessels/<RegExp>/electrical/chargers/<RegExp>/associat
edBus

Description:	Name	of	BUS	device	is	associated	with

Appendix	A:	Keys	Reference

88

/vessels/<RegExp>/electrical/chargers/<RegExp>/voltage

Units:	V	(Volt)

Description:	[missing]

/vessels/<RegExp>/electrical/chargers/<RegExp>/current

Units:	A	(Ampere)

Description:	[missing]

/vessels/<RegExp>/electrical/chargers/<RegExp>/tempera
ture

Title:	temperature

Description:	[missing]

/vessels/<RegExp>/electrical/chargers/<RegExp>/mode

Description:	[missing]

/vessels/<RegExp>/electrical/ac

Description:	AC	buses

/vessels/<RegExp>/electrical/ac/<RegExp>

Title:	AC	bus

Description:	[missing]

Appendix	A:	Keys	Reference

89

/vessels/<RegExp>/electrical/ac/<RegExp>/phase

Description:	[missing]

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])

Title:	AC	Quantities

Description:	AC	equipment	common	quantities

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])/associatedBus

Description:	Name	of	BUS	source	is	assocated	with	(if	applicable,	may	=	NULL)

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])/lineNeutralVoltage

Units:	V	(Volt)

Description:	RMS	voltage	measured	between	phase	and	neutral.

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])/lineLineVoltage

Units:	V	(Volt)

Description:	RMS	voltage	measured	between	phases

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])/current

Units:	A	(Ampere)

Appendix	A:	Keys	Reference

90

Description:	RMS	current

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])/frequency

Units:	Hz	(Hertz)

Description:	AC	frequency.

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])/reactivePower

Units:	W	(Watt)

Description:	Reactive	power

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])/powerFactor

Description:	Power	factor

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])/powerFactorLagging

Description:	Lead/lag	status.

Enum	values:

leading
lagging
error
not	available

Appendix	A:	Keys	Reference

91

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])/realPower

Units:	W	(Watt)

Description:	Real	power.

/vessels/<RegExp>/electrical/ac/<RegExp>/phase/(single)|
([A-C])/apparentPower

Units:	W	(Watt)

Description:	Apparent	power.

/vessels/<RegExp>/notifications

Title:	notifications

Description:	Notifications	currently	raised.	Major	categories	have	well-defined	names,
but	the	tree	can	be	extended	by	any	hierarchical	structure

/vessels/<RegExp>/notifications/mob

Title:	notifications

Description:	Man	overboard

/vessels/<RegExp>/notifications/mob/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/notifications/fire

Title:	notifications

Appendix	A:	Keys	Reference

92

Description:	Fire	onboard

/vessels/<RegExp>/notifications/fire/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/notifications/sinking

Title:	notifications

Description:	Vessel	is	sinking

/vessels/<RegExp>/notifications/sinking/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/notifications/flooding

Title:	notifications

Description:	Vessel	is	flooding

/vessels/<RegExp>/notifications/flooding/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/notifications/collision

Title:	notifications

Appendix	A:	Keys	Reference

93

Description:	In	collision	with	another	vessel	or	object

/vessels/<RegExp>/notifications/collision/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/notifications/grounding

Title:	notifications

Description:	Vessel	grounding

/vessels/<RegExp>/notifications/grounding/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/notifications/listing

Title:	notifications

Description:	Vessel	is	listing

/vessels/<RegExp>/notifications/listing/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/notifications/adrift

Title:	notifications

Appendix	A:	Keys	Reference

94

Description:	Vessel	is	adrift

/vessels/<RegExp>/notifications/adrift/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/notifications/piracy

Title:	notifications

Description:	Under	attack	or	danger	from	pirates

/vessels/<RegExp>/notifications/piracy/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/notifications/abandon

Title:	notifications

Description:	Abandon	ship

/vessels/<RegExp>/notifications/abandon/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/notifications/<RegExp>

Title:	notifications

Appendix	A:	Keys	Reference

95

Description:	Notifications,	their	state,	and	actions.	The	notification	limits	are	set	in	any
Signal	K	key.meta.zones	array.

/vessels/<RegExp>/notifications/<RegExp>/<RegExp>

Description:	Reference	to	the	source	under	/sources.	A	dot	spearated	path	to	the	data.
eg	[type].[bus].[device]

/vessels/<RegExp>/steering

Title:	steering

Description:	Vessel	steering	data	for	steering	controls	(not	Autopilot	'Nav	Data')

/vessels/<RegExp>/steering/rudderAngle

Units:	rad	(Radian)

Description:	Current	rudder	angle,	+ve	is	rudder	to	Starboard

/vessels/<RegExp>/steering/rudderAngleTarget

Units:	rad	(Radian)

Description:	The	angle	the	rudder	should	move	to,	+ve	is	rudder	to	Starboard

/vessels/<RegExp>/steering/autopilot

Title:	autopilot

Description:	Autopilot	data

/vessels/<RegExp>/steering/autopilot/state

Appendix	A:	Keys	Reference

96

Description:	Autopilot	state

/vessels/<RegExp>/steering/autopilot/mode

Description:	Operational	mode

/vessels/<RegExp>/steering/autopilot/target

Title:	target

Description:	Autopilot	target

/vessels/<RegExp>/steering/autopilot/target/angle

Units:	rad	(Radian)

Description:	Target	heading	for	autopilot,	relative	to	magnetic	North	or	Apparent	wind
+port	-starboard

/vessels/<RegExp>/steering/autopilot/target/reference

Description:	Current	source	of	heading	information

/vessels/<RegExp>/steering/autopilot/deadZone

Units:	rad	(Radian)

Description:	Dead	zone	to	ignore	for	rudder	corrections

/vessels/<RegExp>/steering/autopilot/backlash

Units:	rad	(Radian)

Description:	Slack	in	the	rudder	drive	mechanism

Appendix	A:	Keys	Reference

97

/vessels/<RegExp>/steering/autopilot/gain

Description:	Auto-pilot	gain,	higher	number	equals	more	rudder	movement	for	a	given
turn

/vessels/<RegExp>/steering/autopilot/maxDriveCurrent

Units:	A	(Ampere)

Description:	Maximum	current	to	use	to	drive	servo

/vessels/<RegExp>/steering/autopilot/maxDriveRate

Units:	rad/s	(Radian	per	second)

Description:	Maximum	rudder	rotation	speed

/vessels/<RegExp>/steering/autopilot/portLock

Units:	rad	(Radian)

Description:	Position	of	servo	on	port	lock

/vessels/<RegExp>/steering/autopilot/starboardLock

Units:	rad	(Radian)

Description:	Position	of	servo	on	starboard	lock

/vessels/<RegExp>/tanks

Title:	tanks

Description:	Tank	data,	each	tank	indentified	by	a	unique	name	i.e.	FreshWater_2

Appendix	A:	Keys	Reference

98

/vessels/<RegExp>/tanks/freshWater

Description:	[missing]

/vessels/<RegExp>/tanks/freshWater/<RegExp>

Description:	[missing]

/vessels/<RegExp>/tanks/freshWater/<RegExp>/name

Description:	The	name	of	the	tank.	Useful	if	multiple	tanks	of	a	certain	type	are	on
board

/vessels/<RegExp>/tanks/freshWater/<RegExp>/type

Description:	The	type	of	tank

Enum	values:

petrol
fresh	water
greywater
holding
lpg
diesel
rum

/vessels/<RegExp>/tanks/freshWater/<RegExp>/capacity

Units:	m3	(Cubic	meter)

Description:	Total	capacity

Appendix	A:	Keys	Reference

99

/vessels/<RegExp>/tanks/freshWater/<RegExp>/currentLe
vel

Units:	ratio	(Ratio)

Description:	Level	of	fluid	in	tank	0-100%

/vessels/<RegExp>/tanks/freshWater/<RegExp>/currentVo
lume

Units:	m3	(Cubic	meter)

Description:	Volume	of	fluid	in	tank

/vessels/<RegExp>/tanks/wasteWater

Description:	[missing]

/vessels/<RegExp>/tanks/wasteWater/<RegExp>

Description:	[missing]

/vessels/<RegExp>/tanks/wasteWater/<RegExp>/name

Description:	The	name	of	the	tank.	Useful	if	multiple	tanks	of	a	certain	type	are	on
board

/vessels/<RegExp>/tanks/wasteWater/<RegExp>/type

Description:	The	type	of	tank

Enum	values:

petrol
fresh	water

Appendix	A:	Keys	Reference

100

greywater
holding
lpg
diesel
rum

/vessels/<RegExp>/tanks/wasteWater/<RegExp>/capacity

Units:	m3	(Cubic	meter)

Description:	Total	capacity

/vessels/<RegExp>/tanks/wasteWater/<RegExp>/currentL
evel

Units:	ratio	(Ratio)

Description:	Level	of	fluid	in	tank	0-100%

/vessels/<RegExp>/tanks/wasteWater/<RegExp>/currentV
olume

Units:	m3	(Cubic	meter)

Description:	Volume	of	fluid	in	tank

/vessels/<RegExp>/tanks/blackWater

Description:	[missing]

/vessels/<RegExp>/tanks/blackWater/<RegExp>

Description:	[missing]

Appendix	A:	Keys	Reference

101

/vessels/<RegExp>/tanks/blackWater/<RegExp>/name

Description:	The	name	of	the	tank.	Useful	if	multiple	tanks	of	a	certain	type	are	on
board

/vessels/<RegExp>/tanks/blackWater/<RegExp>/type

Description:	The	type	of	tank

Enum	values:

petrol
fresh	water
greywater
holding
lpg
diesel
rum

/vessels/<RegExp>/tanks/blackWater/<RegExp>/capacity

Units:	m3	(Cubic	meter)

Description:	Total	capacity

/vessels/<RegExp>/tanks/blackWater/<RegExp>/currentLe
vel

Units:	ratio	(Ratio)

Description:	Level	of	fluid	in	tank	0-100%

/vessels/<RegExp>/tanks/blackWater/<RegExp>/currentV
olume

Units:	m3	(Cubic	meter)

Appendix	A:	Keys	Reference

102

Description:	Volume	of	fluid	in	tank

/vessels/<RegExp>/tanks/fuelWater

Description:	[missing]

/vessels/<RegExp>/tanks/fuelWater/<RegExp>

Description:	[missing]

/vessels/<RegExp>/tanks/fuelWater/<RegExp>/name

Description:	The	name	of	the	tank.	Useful	if	multiple	tanks	of	a	certain	type	are	on
board

/vessels/<RegExp>/tanks/fuelWater/<RegExp>/type

Description:	The	type	of	tank

Enum	values:

petrol
fresh	water
greywater
holding
lpg
diesel
rum

/vessels/<RegExp>/tanks/fuelWater/<RegExp>/capacity

Units:	m3	(Cubic	meter)

Description:	Total	capacity

Appendix	A:	Keys	Reference

103

/vessels/<RegExp>/tanks/fuelWater/<RegExp>/currentLev
el

Units:	ratio	(Ratio)

Description:	Level	of	fluid	in	tank	0-100%

/vessels/<RegExp>/tanks/fuelWater/<RegExp>/currentVol
ume

Units:	m3	(Cubic	meter)

Description:	Volume	of	fluid	in	tank

/vessels/<RegExp>/tanks/fuel

Description:	[missing]

/vessels/<RegExp>/tanks/fuel/<RegExp>

Description:	[missing]

/vessels/<RegExp>/tanks/fuel/<RegExp>/name

Description:	The	name	of	the	tank.	Useful	if	multiple	tanks	of	a	certain	type	are	on
board

/vessels/<RegExp>/tanks/fuel/<RegExp>/type

Description:	The	type	of	tank

Enum	values:

Appendix	A:	Keys	Reference

104

petrol
fresh	water
greywater
holding
lpg
diesel
rum

/vessels/<RegExp>/tanks/fuel/<RegExp>/capacity

Units:	m3	(Cubic	meter)

Description:	Total	capacity

/vessels/<RegExp>/tanks/fuel/<RegExp>/currentLevel

Units:	ratio	(Ratio)

Description:	Level	of	fluid	in	tank	0-100%

/vessels/<RegExp>/tanks/fuel/<RegExp>/currentVolume

Units:	m3	(Cubic	meter)

Description:	Volume	of	fluid	in	tank

/vessels/<RegExp>/tanks/lubrication

Description:	[missing]

/vessels/<RegExp>/tanks/lubrication/<RegExp>

Description:	[missing]

Appendix	A:	Keys	Reference

105

/vessels/<RegExp>/tanks/lubrication/<RegExp>/name

Description:	The	name	of	the	tank.	Useful	if	multiple	tanks	of	a	certain	type	are	on
board

/vessels/<RegExp>/tanks/lubrication/<RegExp>/type

Description:	The	type	of	tank

Enum	values:

petrol
fresh	water
greywater
holding
lpg
diesel
rum

/vessels/<RegExp>/tanks/lubrication/<RegExp>/capacity

Units:	m3	(Cubic	meter)

Description:	Total	capacity

/vessels/<RegExp>/tanks/lubrication/<RegExp>/currentLe
vel

Units:	ratio	(Ratio)

Description:	Level	of	fluid	in	tank	0-100%

/vessels/<RegExp>/tanks/lubrication/<RegExp>/currentVo
lume

Units:	m3	(Cubic	meter)

Appendix	A:	Keys	Reference

106

Description:	Volume	of	fluid	in	tank

/vessels/<RegExp>/tanks/liveWell

Description:	[missing]

/vessels/<RegExp>/tanks/liveWell/<RegExp>

Description:	[missing]

/vessels/<RegExp>/tanks/liveWell/<RegExp>/name

Description:	The	name	of	the	tank.	Useful	if	multiple	tanks	of	a	certain	type	are	on
board

/vessels/<RegExp>/tanks/liveWell/<RegExp>/type

Description:	The	type	of	tank

Enum	values:

petrol
fresh	water
greywater
holding
lpg
diesel
rum

/vessels/<RegExp>/tanks/liveWell/<RegExp>/capacity

Units:	m3	(Cubic	meter)

Description:	Total	capacity

Appendix	A:	Keys	Reference

107

/vessels/<RegExp>/tanks/liveWell/<RegExp>/currentLevel

Units:	ratio	(Ratio)

Description:	Level	of	fluid	in	tank	0-100%

/vessels/<RegExp>/tanks/liveWell/<RegExp>/currentVolu
me

Units:	m3	(Cubic	meter)

Description:	Volume	of	fluid	in	tank

/vessels/<RegExp>/design

Title:	design

Description:	Design/dimensional	data	of	this	vessel

/vessels/<RegExp>/design/displacement

Units:	kg	(Kilogram)

Description:	The	displacement	of	the	vessel

/vessels/<RegExp>/design/draft

Title:	draft

Description:	The	draft	of	the	vessel

/vessels/<RegExp>/design/draft/minimum

Units:	m	(Meter)

Appendix	A:	Keys	Reference

108

Description:	The	minimum	draft	of	the	vessel

/vessels/<RegExp>/design/draft/maximum

Units:	m	(Meter)

Description:	The	maximum	draft	of	the	vessel

/vessels/<RegExp>/design/draft/canoe

Units:	m	(Meter)

Description:	The	draft	of	the	vessel	without	protrusions	such	as	keel,	centerboard,
rudder

/vessels/<RegExp>/design/length

Title:	length

Description:	The	various	lengths	of	the	vessel

/vessels/<RegExp>/design/length/overall

Units:	m	(Meter)

Description:	Length	overall

/vessels/<RegExp>/design/length/hull

Units:	m	(Meter)

Description:	Length	of	hull

/vessels/<RegExp>/design/length/waterline

Appendix	A:	Keys	Reference

109

Units:	m	(Meter)

Description:	Length	at	waterline

/vessels/<RegExp>/design/keel

Title:	keel

Description:	Information	about	the	vessel's	keel

/vessels/<RegExp>/design/keel/type

Description:	The	type	of	keel.

Enum	values:

long
fin
flare
bulb
wing
centerboard
kanting
lifting
daggerboard

/vessels/<RegExp>/design/keel/angle

Units:	rad	(Radian)

Description:	A	number	indicating	at	which	angle	the	keel	currently	is	(in	case	of	a
canting	keel),	negative	to	port.

/vessels/<RegExp>/design/keel/lift

Units:	ratio	(Ratio)

Appendix	A:	Keys	Reference

110

Description:	In	the	case	of	a	lifting	keel,	centreboard	or	daggerboard,	the	part	of	the
keel	which	is	extended.	0	is	'all	the	way	up'	and	1	is	'all	the	way	down'.	0.8	would	be
80%	down.

/vessels/<RegExp>/design/beam

Units:	m	(Meter)

Description:	Beam	length

/vessels/<RegExp>/design/airHeight

Units:	m	(Meter)

Description:	Total	height	of	the	vessel

/vessels/<RegExp>/design/rigging

Title:	rigging

Description:	Information	about	the	vessel's	rigging

/vessels/<RegExp>/design/rigging/configuration

Description:	The	configuration	of	the	rigging

/vessels/<RegExp>/design/rigging/masts

Description:	The	number	of	masts	on	the	vessel.

/vessels/<RegExp>/sails

Title:	sails

Appendix	A:	Keys	Reference

111

Description:	Sails	data

/vessels/<RegExp>/sails/inventory

Description:	An	object	containing	a	description	of	each	sail	available	to	the	vessel	crew

/vessels/<RegExp>/sails/inventory/<RegExp>

Description:	'sail'	data	type.

/vessels/<RegExp>/sails/inventory/<RegExp>/name

Description:	An	unique	identifier	by	which	the	crew	identifies	a	sail

/vessels/<RegExp>/sails/inventory/<RegExp>/type

Description:	The	type	of	sail

/vessels/<RegExp>/sails/inventory/<RegExp>/material

Description:	The	material	the	sail	is	made	from	(optional)

/vessels/<RegExp>/sails/inventory/<RegExp>/brand

Description:	The	brand	of	the	sail	(optional)

/vessels/<RegExp>/sails/inventory/<RegExp>/active

Description:	Indicates	wether	this	sail	is	currently	in	use	or	not

Appendix	A:	Keys	Reference

112

/vessels/<RegExp>/sails/inventory/<RegExp>/area

Units:	m2	(Square	meter)

Description:	The	total	area	of	this	sail	in	square	meters

/vessels/<RegExp>/sails/inventory/<RegExp>/minimumWi
nd

Units:	m/s	(Meters	per	second)

Description:	The	minimum	wind	speed	this	sail	can	be	used	with

/vessels/<RegExp>/sails/inventory/<RegExp>/maximumWi
nd

Units:	m/s	(Meters	per	second)

Description:	The	maximum	wind	speed	this	sail	can	be	used	with

/vessels/<RegExp>/sails/area

Description:	An	object	containing	information	about	the	vessels'	sails.

/vessels/<RegExp>/sails/area/total

Units:	m2	(Square	meter)

Description:	The	total	area	of	all	sails	on	the	vessel

/vessels/<RegExp>/sails/area/active

Units:	m2	(Square	meter)

Description:	The	total	area	of	the	sails	currently	in	use	on	the	vessel

Appendix	A:	Keys	Reference

113

/vessels/<RegExp>/sensors

Title:	sensors

Description:	Sensors,	their	state,	and	data.

/vessels/<RegExp>/sensors/<RegExp>

Title:	sensor

Description:	An	object	describing	an	individual	sensor.	It	should	be	an	object	in	vessel,
named	using	a	unique	name	or	UUID

/vessels/<RegExp>/sensors/<RegExp>/name

Description:	The	common	name	of	the	sensor

/vessels/<RegExp>/sensors/<RegExp>/sensorType

Description:	The	datamodel	definition	of	the	sensor	data.	FIXME	-	need	to	create	a
definitions	lib	of	sensor	datamodel	types

/vessels/<RegExp>/sensors/<RegExp>/sensorData

Description:	The	data	of	the	sensor	data.	FIXME	-	need	to	ref	the	definitions	of	sensor
types

/vessels/<RegExp>/sensors/<RegExp>/fromBow

Description:	The	distance	from	the	bow	to	the	sensor	location

Appendix	A:	Keys	Reference

114

/vessels/<RegExp>/sensors/<RegExp>/fromCenter

Description:	The	distance	from	the	centerline	to	the	sensor	location,	-ve	to	starboard,
+ve	to	port

/vessels/<RegExp>/performance

Title:	performance

Description:	Performance	Sailing	data	including	VMG,	Polar	Speed,	tack	angle,	etc.

/vessels/<RegExp>/performance/polarSpeed

Units:	m/s	(Meters	per	second)

Description:	The	current	polar	speed	based	on	current	polar	diagram,	trueWindSpeed
and	truewindAngle.

/vessels/<RegExp>/performance/polarSpeedRatio

Units:	ratio	(Ratio)

Description:	The	ratio	of	current	speed	through	water	to	the	polar	speed.

/vessels/<RegExp>/performance/velocityMadeGood

Units:	m/s	(Meters	per	second)

Description:	The	current	velocity	made	good	derived	from	the	speed	through	water	and
appearant	wind	angle.	A	positive	value	is	heading	to	upwind,	negative	to	downwind.

/vessels/<RegExp>/performance/velocityMadeGoodToWa
ypoint

Units:	m/s	(Meters	per	second)

Appendix	A:	Keys	Reference

115

Description:	The	current	velocity	made	good	to	the	next	waypoint	derived	from	the
speedOverGround,	courseOverGround.

/vessels/<RegExp>/performance/beatAngle

Units:	rad	(Radian)

Description:	The	true	wind	beat	angle	for	the	best	velocity	made	good	based	on	current
current	polar	diagram	and	trueWindSpeed.

/vessels/<RegExp>/performance/beatAngleVelocityMadeG
ood

Units:	m/s	(Meters	per	second)

Description:	The	velocity	made	good	for	the	beat	angle.

/vessels/<RegExp>/performance/beatAngleTargetSpeed

Units:	m/s	(Meters	per	second)

Description:	The	target	speed	for	the	beat	angle.

/vessels/<RegExp>/performance/gybeAngle

Units:	rad	(Radian)

Description:	The	true	wind	gybe	angle	for	the	best	velocity	made	good	downwind	based
on	current	polar	diagram	and	trueWindSpeed.

/vessels/<RegExp>/performance/gybeAngleVelocityMade
Good

Units:	m/s	(Meters	per	second)

Appendix	A:	Keys	Reference

116

Description:	The	velocity	made	good	for	the	gybe	angle

/vessels/<RegExp>/performance/gybeAngleTargetSpeed

Units:	m/s	(Meters	per	second)

Description:	The	target	speed	for	the	gybe	angle.

/vessels/<RegExp>/performance/targetAngle

Units:	rad	(Radian)

Description:	The	true	wind	gybe	or	beat	angle	for	the	best	velocity	made	good
downwind	or	upwind	based	on	current	polar	diagram	and	trueWindSpeed.

/vessels/<RegExp>/performance/targetSpeed

Units:	m/s	(Meters	per	second)

Description:	The	target	speed	for	the	beat	angle	or	gybe	angle,	which	ever	is
applicable.

/vessels/<RegExp>/performance/leeway

Units:	rad	(Radian)

Description:	Current	leeway

/vessels/<RegExp>/performance/tackMagnetic

Units:	rad	(Radian)

Description:	Magnetic	heading	on	opposite	tack.

Appendix	A:	Keys	Reference

117

/vessels/<RegExp>/performance/tackTrue

Units:	rad	(Radian)

Description:	True	heading	on	opposite	tack.

/resources

Title:	resources

Description:	Resources	to	aid	in	navigation	and	operation	of	the	vessel	including
waypoints,	routes,	notes,	etc.

/resources/charts

Title:	chart

Description:	A	holder	for	charts,	each	named	with	their	chart	code

/resources/charts/<RegExp>

Description:	A	chart

/resources/charts/<RegExp>/name

Description:	Chart	common	name

/resources/charts/<RegExp>/identifier

Description:	Chart	number

/resources/charts/<RegExp>/description

Appendix	A:	Keys	Reference

118

Description:	A	description	of	the	chart

/resources/charts/<RegExp>/tilemapUrl

Description:	A	url	to	the	tilemap	of	the	chart	for	use	in	TMS	chartplotting	apps

/resources/charts/<RegExp>/region

Description:	Region	related	to	note.	A	pointer	to	a	region	UUID.	Alternative	to	geohash

/resources/charts/<RegExp>/geohash

Description:	Position	related	to	chart.	Alternative	to	region

/resources/charts/<RegExp>/chartUrl

Description:	A	url	to	the	chart	file's	storage	location

/resources/charts/<RegExp>/scale

Description:	The	scale	of	the	chart,	the	larger	number	from	1:200000

/resources/charts/<RegExp>/chartFormat

Description:	The	format	of	the	chart

Enum	values:

gif
geotiff
kap
png
jpg

Appendix	A:	Keys	Reference

119

kml
wkt
topojson
geojson
gpx
tms
S-57
S-63
svg
other

/resources/routes

Title:	route

Description:	A	holder	for	routes,	each	named	with	a	UUID

/resources/routes/<RegExp>

Description:	A	route,	named	with	a	UUID

/resources/routes/<RegExp>/name

Description:	Route's	common	name

/resources/routes/<RegExp>/description

Description:	A	description	of	the	route

/resources/routes/<RegExp>/distance

Units:	m	(Meter)

Description:	Total	distance	from	start	to	end

Appendix	A:	Keys	Reference

120

/resources/routes/<RegExp>/start

Description:	The	waypoint	UUID	at	the	start	of	the	route

/resources/routes/<RegExp>/end

Description:	The	waypoint	UUID	at	the	end	of	the	route

/resources/routes/<RegExp>/feature

Title:	Feature

Description:	A	Geo	JSON	feature	object	which	describes	the	route	between	the
waypoints

/resources/routes/<RegExp>/feature/type

Description:	[missing]

Enum	values:

*	Feature

/resources/routes/<RegExp>/feature/geometry

Title:	LineString

Description:	[missing]

/resources/routes/<RegExp>/feature/geometry/type

Description:	[missing]

Enum	values:

Appendix	A:	Keys	Reference

121

*	LineString

/resources/routes/<RegExp>/feature/geometry/coordinate
s

Description:	[missing]

/resources/routes/<RegExp>/feature/properties

Description:	Additional	data	of	any	type

/resources/routes/<RegExp>/feature/id

Description:	[missing]

/resources/notes

Title:	notes

Description:	A	holder	for	notes	about	regions,	each	named	with	a	UUID.	Notes	might
include	navigation	or	cruising	info,	images,	or	anything

/resources/notes/<RegExp>

Description:	A	note	about	a	region,	named	with	a	UUID.	Notes	might	include	navigation
or	cruising	info,	images,	or	anything

/resources/notes/<RegExp>/title

Description:	Note's	common	name

Appendix	A:	Keys	Reference

122

/resources/notes/<RegExp>/description

Description:	A	textual	description	of	the	note

/resources/notes/<RegExp>/region

Description:	Region	related	to	note.	A	pointer	to	a	region	UUID.	Alternative	to	position
or	geohash

/resources/notes/<RegExp>/position

Title:	position

Description:	Position	related	to	note.	Alternative	to	region	or	geohash

/resources/notes/<RegExp>/geohash

Description:	Position	related	to	note.	Alternative	to	region	or	position

/resources/notes/<RegExp>/mimeType

Description:	MIME	type	of	the	note

/resources/notes/<RegExp>/url

Description:	Location	of	the	note

/resources/regions

Title:	region

Description:	A	holder	for	regions,	each	named	with	UUID

Appendix	A:	Keys	Reference

123

/resources/regions/<RegExp>

Description:	A	region	of	interest,	each	named	with	a	UUID

/resources/regions/<RegExp>/geohash

Description:	geohash	of	the	approximate	boundary	of	this	region

/resources/regions/<RegExp>/feature

Title:	Feature

Description:	A	Geo	JSON	feature	object	which	describes	the	regions	boundary

/resources/regions/<RegExp>/feature/type

Description:	[missing]

Enum	values:

*	Feature

/resources/regions/<RegExp>/feature/geometry

Description:	[missing]

/resources/regions/<RegExp>/feature/properties

Description:	Additional	data	of	any	type

/resources/regions/<RegExp>/feature/id

Description:	[missing]

Appendix	A:	Keys	Reference

124

/resources/waypoints

Title:	waypoints

Description:	A	holder	for	waypoints,	each	named	with	a	UUID

/resources/waypoints/<RegExp>

Description:	A	waypoint,	an	object	with	a	signal	k	position	object,	and	GeoJSON
Feature	object	(see	geojson.org,	and	https://github.com/fge/sample-json-
schemas/tree/master/geojson)

/resources/waypoints/<RegExp>/position

Title:	position

Description:	The	position	in	3	dimensions

/resources/waypoints/<RegExp>/feature

Title:	Feature

Description:	A	Geo	JSON	feature	object

/resources/waypoints/<RegExp>/feature/type

Description:	[missing]

Enum	values:

*	Feature

/resources/waypoints/<RegExp>/feature/geometry

Appendix	A:	Keys	Reference

125

https://github.com/fge/sample-json-schemas/tree/master/geojson

Title:	Point

Description:	[missing]

/resources/waypoints/<RegExp>/feature/geometry/type

Description:	[missing]

Enum	values:

*	Point

/resources/waypoints/<RegExp>/feature/geometry/coordi
nates

Description:	A	single	position,	in	x,y	order	(Lon,	Lat)

/resources/waypoints/<RegExp>/feature/properties

Description:	Additional	data	of	any	type

/resources/waypoints/<RegExp>/feature/id

Description:	[missing]

/version

Description:	Version	of	the	schema	and	APIs	that	this	data	is	using	in	Canonical	format
i.e.	V1.0.0.

Appendix	A:	Keys	Reference

126

Signal	K	Specification	Changelog
Version	0.0.1

Change	1
Change	2

Version	0.0.0

Appendix	B:	Changelog

127

	Signal K Specification
	Using SK
	Developing with SK
	Full and Delta Models
	Multiple Values
	Metadata
	Permissions
	Ports, Urls and Versioning
	REST API
	Streaming WebSocket API
	Discovery & Connection Establishment
	Subscription Protocol
	Notifications

	Background and Design Rationale
	How Can I Help?
	Appendix A: Keys Reference
	Appendix B: Changelog

