Preface
As Navico is continuously improving this product, we retain the right to make changes to the product at any time which may not be reflected in this version of the manual. Please contact your nearest distributor if you require any further assistance.
It is the owner's sole responsibility to install and use the instrument and transducers in a manner that will not cause accidents, personal injury or property damage. The user of this product is solely responsible for observing safe boating practices.
NAVICO HOLDING AS AND ITS SUBSIDIARIES, BRANCHES AND AFFILIATES DISCLAIM ALL LIABILITY FOR ANY USE OF THIS PRODUCT IN A WAY THAT MAY CAUSE ACCIDENTS, DAMAGE OR THAT MAY VIOLATE THE LAW.
Governing Language: This statement, any instruction manuals, user guides and other information relating to the product (Documentation) may be translated to, or has been translated from, another language (Translation). In the event of any conflict between any Translation of the Documentation, the English language version of the Documentation will be the official version of the Documentation.
This manual represents the product as at the time of printing. Navico Holding AS and its subsidiaries, branches and affiliates reserve the right to make changes to specifications without notice.

Copyright
Copyright © 2014 Navico Holding AS.

Warranty
The warranty card is supplied as a separate document.
In case of any queries, refer to the brand web site of your display or system:
www.bandg.com

Declarations and conformance
This equipment is intended for use in international waters as well as coastal sea areas administered by countries of the E.U. and E.E.A.

Compliance Statements
The B&G Zeus² series;
• complies with CE under R&TTE directive 1999/5/EC
• complies with the requirements of level 2 devices of the Radio-communications (Electromagnetic Compatibility) standard 2008
The relevant Declaration of Conformity is available on the following website, under the model documentation section:
www.bandg.com

Warning
The user is cautioned that any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that the interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the
user is encouraged to try to correct the interference by one or more of the following measures:
Reorient or relocate the receiving antenna
• Increase the separation between the equipment and receiver
• Connect the equipment into an outlet on a circuit different from that of the receiver
• Consult the dealer or an experienced technician for help

Trademarks
• NMEA 2000 is a registered trademark of the National Marine Electronics Association
• Navionics is a registered trademark of Navionics SpA
• B&G, Lowrance, StructureScan, Navico, SonicHub, SimNet, Skimmer, InsightHD, Broadband Radar, Broadband Sonar, and SonarHub are trademarks of Navico, registered in the US and other countries

About this manual
This manual is a reference guide for installing the B&G Zeus² series.
The manual does not cover basic background information about how equipment such as radars, echosounders and AIS work.
Important text that requires special attention from the reader is emphasized as follows:

 ➔ Note: Used to draw the reader’s attention to a comment or some important information.

⚠️ Warning: Used when it is necessary to warn personnel that they should proceed carefully to prevent risk of injury and/or damage to equipment/personnel.
Contents

1 Zeus² overview
2 Front - controls
3 Rear - connections

4 Hardware installation
4 Display mounting location
5 Display installation

7 Wiring
7 Guidelines
8 Power connection
9 Power Control connection
10 External alarm
11 Connect an external monitor
12 NMEA 2000 – connection to backbone
13 NMEA 0183 device connection
14 Ethernet device connection
15 Video in

14 Software setup
14 First time startup
15 Time and Date
15 Power Control setup
15 Source selection
16 Device list
16 Network Groups
17 Diagnostics
17 External Alarm Setup
17 Radar setup
19 Video In configuration
20 Autopilot setup
26 Fuel setup
28 CZone setup
29 Software updates and data backup
30 NMEA 0183 setup
31 Ethernet setup
32 Wifi setup

34 Accessories

35 Supported data
35 NMEA 2000 compliant PGN List
38 NMEA 0183 supported sentences

39 Specifications

40 Dimensioned drawings
Zeus² overview

The Zeus² range of multifunction displays consist of rugged marine displays with built in powerful marine processors. Display size choices are 7”, 9”, and 12”. All models come with a built in 10 Hz high gain GPS antenna.

The ability to network over NMEA 2000 and ethernet allows access to data as well as control of numerous optional devices that can provide radar, audio entertainment, weather and even digital switching.

All displays can operate on 12 V or 24 V systems.

Each size display may be flush or bracket mounted.

Included Items

1. Zeus² display
2. Sun cover
3. Bezels trim (black and silver)
4. Power cable
5. Self tapping pozi screws, 4Gx1/2” (x4 for 7/9, x8 for 12)
6. Ethernet dust cap (x2 for Zeus² 12)
7. HDMI dust cap (only for Zeus² 12)
8. NMEA 2000 dust cap
9. Video/NMEA 0183 dust cap
11. Bracket
12. Bracket knobs
13. Self tapping pozi screws for bracket
Front - controls

1. Touch screen - cursor control, chart panning and zoom, context related menus
2. Home key - opens home page for page selection and setup options
3. Rotary knob - zooming and menu scrolling / selection by press
4. Exit - exits menu dialogue, clears cursor from screen
5. STBY/AUTO - autopilot control
6. Mark - places waypoint at vessel location
7. Power - turns on unit, opens System Controls dialogue, long press turns off
8. Card reader door - access to dual card reader slot
Rear - connections

1 Ethernet - connection to high bandwidth network modules
2 HDMI - video output for external monitor
3 NMEA 2000 - dynamic data and user database sharing
4 Video - input for video sources such as cameras
5 Power - 12 V or 24 V supply input
Hardware installation

Display mounting location

Choose the mounting locations carefully before you drill or cut; The display should be mounted so that the operator can easily use the controls and clearly see the display screen. B&G displays are high-contrast and anti-reflective, and are viewable in direct sunlight, but for best results install the display out of direct sunlight. The chosen location should have minimal glare from windows or bright objects.

If bracket mounting the display, choose an area where the display will not be subjected to excessive vibration.

The mounting location will affect the internal GPS receiver. Test the unit in it’s intended location to ensure satisfactory reception. An external GPS source may be added to overcome poor reception areas.

Leave sufficient clearance to connect all relevant cables.

Check that it is possible to route cables to intended mounting location

Ensure that any holes cut are in a safe position and will not weaken the boat’s structure. If in doubt, consult a qualified boat builder.

Before cutting a hole in a panel, make sure that there are no hidden electrical wires or other parts behind the panel.

Do not mount any part where it can be used as a hand hold, where it might be submerged, or where it will interfere with the operation, launching or retrieving of the boat.

Choose an area where the unit will not be subjected to excessive vibration, or heat.

Choose a location that will not expose the unit to conditions that exceed the IP rating - refer to “Specifications” on page 39.

Note: Where flush mounted, the enclosure should be dry and well ventilated. The ventilation of the space behind the unit should be enough to prevent excessive heat build up as a combined result of radiated heat off the heat sink, and sunlight heating of the enclosure. In very small enclosures, it may be required to fit forced cooling.

Warning: Inadequate ventilation and subsequent overheating of display may cause unreliable operation and reduced service life. Ensure enclosure does not consistently exceed +55° C (+131° F) during normal daytime operation (in direct sunlight, and at full screen brightness).

Warning: When installing, ensure appropriate safety equipment is used, e.g. ear muffs, protective glasses, gloves and a dust mask. Power tools may exceed safe noise levels, and can cast off dangerous protectiles. The dust from many materials commonly used in boat construction may cause irritation or damage to eyes, skin, and lungs.
Display installation

Bracket mounting
Place the bracket in the desired mounting location, and use a pencil or permanent marker to mark drilling locations.

→ **Note:** ensure that the chosen location has enough height to accommodate the display fitted in the bracket, and allows tilting of the display. Also, adequate space is required on both sides to allow tightening and loosening of the knobs.

Use fasteners suited to the mounting surface material. If the material is too thin for self tappers, reinforce it, or mount bracket with machine screws and large washers. Use only 304 or 316 stainless steel fasteners. Mark the screw locations using bracket as template, and drill pilot holes.

Screw down the bracket.

Mount the display to the bracket using the knobs. Hand tighten only. The ratchet teeth in the bracket and display case ensure a positive grip and prevent the unit changing from the desired angle.
Flush mounting
Check the template for scaling accuracy, using a tape measure or ruler against the ruler printed on the template.
Cut away excess paper if required, and tape template to mounting surface. Check it is correctly aligned to a vertical or horizontal reference. Do not use a bubble level as vessel may be listing! Adjust where required.

Drill all marked pilot holes, then using an appropriate saw, cut through the template and mounting surface, along the dotted line bordering the shaded area of the template.

Bezel Fitment and Removal
When fitting bezels, ensure hook tabs on back of each bezel recess in to opposing slots on screen frame. Once flush with front surface of screen, slide top bezel to the left, and bottom bezel to the right to lock in to place. The bezel trim have been designed to be very low profile, and therefore fully conceal the locking tabs that keep them from being accidentally disengaged from the mounting flange. To release the locking tab, it is necessary to gently lever the centre of the bezel trim away from the mounting flange. To remove the cover, simultaneously slide it sideways, to the right for the top bezel, and to the left for the bottom bezel.

Check the fit of the display, and file away remaining obstructions. Secure the display with the supplied screws. Once screws are fully tightened, ensure there is complete contact with the mounting surface.
Wiring

Guidelines
Care must be taken when running cables in a boat, to ensure that the cables are protected from damage and do not interfere with mechanical systems such as throttle cables and hatch covers.

At each end of a cable, it is advisable to leave a short loop hanging lower than the termination point. This prevents any water that may get in contact with the cable from running down it to termination points vulnerable to corrosion.

Extending cables should be done with suitable crimp connectors or solder and heat shrink. Keeps joins as high as possible to minimize possibility of water immersion.

Routing cables adjacent to high current or high frequency signal cables could cause noise to be induced from one device to another. Allow spacing between cables where possible.

Secure all cables at regular intervals, to prevent movement during boat operation. Cable movement may cause fatigue at termination points or cause the cable to interfere with other boat systems.

Allows enough cable slack for easy access to connectors when removing the device from a bracket or flush mount installation.

⚠️ **Warning:** Before starting the installation, be sure to turn electrical power off. If power is left on or turned on during the installation, fire, electrical shock, or other serious injury may occur. Be sure that the voltage of the power supply is compatible with the Zeus² display

⚠️ **Warning:** The positive supply wire (red) should always be connected to (+) DC with the supplied fuse or a circuit breaker (closest available to fuse rating).

Power connection
Zeus² displays are designed to be powered by a 12 or 24 V DC system. They are protected against reverse polarity, under voltage and over voltage.

1. Zeus² display
2. Four pin power cable
3. Positive supply, 12/24V (red wire)
4. Negative (black wire)
5. Power control (yellow wire)
6. Alarm output (blue wire)
Power Control connection

The yellow Power Control wire on the Zeus² power cable can either be an input that will turn on the processor when power is applied, or an output that turns on other devices when the processor is powered on. It can be configured at the installation stage to control the power state of displays and compatible devices. When commissioning the system, the Zeus² can be set to be a Power Control Slave or Power Control Master.

Power Control configuration options of the Zeus² are:-

- Zeus² to turn on when power key pressed: Yellow wire not connected
- Zeus² to turn on when power source is turned on: Common red and yellow wires
- Zeus² to turn on with power key, as well as other compatible devices such as Broadband Radar: Yellow wire connected to a Power Control Bus. (Set one or more displays to be a Power Control Master)

Power Control unconnected

Device will turn on and off when the power button on the front of the unit is pressed.
Leave yellow Power Control wire disconnected.
Tape or heat-shrink end to prevent shorting.

Power Control to supply positive (auto on)

Device will turn on immediately when power is applied. Common the yellow wire with the red wire after the fuse.

⇒ **Note:** The unit can not be powered down by power button, but can be put in to standby mode. (screen backlight also turns off).
Power Control master/slave bus

Turning on the ‘master’ device turns on connected ‘slave’ devices.

1 Zeus² displays
2 Power cable
3 Radar Interface box
4 Sonic Hub
5 Ground wire
6 Positive wire
7 Power control wire

If the left Zeus² turns on using the power button and is set as the Power Control Master, it will output voltage on the Power Control bus to power on the other Zeus², the Radar Interface, and the SonicHub.

If the right Zeus² is set to Power Control Slave, it cannot be powered down using its own power button, but can be set to standby.

If the left Zeus² (Power Control Master) is off, the right Zeus² can be turned on using its own power button, but won’t turn on any other devices.

To turn on all network devices from either Zeus², both devices can be configured as Power Control Masters.

→ Note: If an Zeus² has its power state controlled by another device (or ignition switch), it can’t be totally powered down. It can however enter a standby state to save power. If the power button is pressed and Power Off selected, a message will appear “Preparing to standby…”

External alarm

Blue wire on power cable:

An external alarm can be connected to one or more Zeus² displays on the network. The external alarm can be a small peizo buzzer connected directly, or a horn siren connected via a relay.

Alarms are configured globally in the system i.e. they can be configured on any one networked multifunction device or Triton instrument, and be seen, heard, and acknowledged from all devices. Individual devices can also be configured to not to sound their internal buzzer, but still display the alarm information. For information on configuring alarms, refer to the Alarms section in the Operator manual.
For sirens that draw more than 1 Amp, use a relay

Connect an external monitor
The Zeus² 12 offers an HDMI output which can be connected to an external monitor to replicate video at a remote location.

1 MO series monitor
2 HDMI cable
3 Zeus² 12
4 HDMI cable - waterproof connector (use in exposed installations)

Note: If connected to an HDTV it is possible the image may appear cropped, ie missing some detail at the outer edges of the screen. This is usually due to overscan applied by the TV. Refer to your TV operator manual to find if and how overscan can be turned off.
NMEA 2000 – connection to backbone

Device connection
The Zeus² multi function displays are equipped with an NMEA 2000 data port, which allows the receiving and sharing of a multitude of data from various sources.

Essential network information

• The standardised physical cables/connectors for NMEA 2000 are ‘Micro-C’ and ‘Mini-C’, directly derived from the automation industry’s ‘DeviceNET’ - ‘Micro-C’ being the more commonly used size.
• A network consists of a linear ‘backbone’ from which ‘drop cables’ connect to NMEA 2000 compliant devices
• A single drop cable has a maximum length of 6 m (20 ft). The total length of all drop cables combined should not exceed 78m (256 ft)
• A NMEA 2000 network, using Micro-C cabling, has a maximum cable length of 100 m (328 ft), between any two points
• A NMEA 2000 network needs to have a terminator at each end of the backbone. A terminator can be one of the following:
 • a terminator blank plug
 • a wind transducer (where the mast cable is one end of the backbone)

Planning and installing a network backbone
The Micro-C backbone needs to run between the locations of all products to be installed - typically in a bow to stern layout - and be no further than 6 m from a device to be connected. Choose from the following components to make up the backbone:

• Micro-C cables: 0.6 m (2 ft), 1.8 m (6 ft), 4.55 m (15 ft), and 7.58 m (25 ft) cables
• T-connector. Used to connect a drop cable to the backbone
• Micro-C power cables. Connected to backbone via a T-connector

→ Note: When using a wind sensor, the mast cable should be connected at one end of the backbone, as the sensor is fitted with a termination resistor.
→ Note: Most NMEA 2000 devices can be connected directly to a SimNet backbone and SimNet devices can be connected to a NMEA 2000 network by using adapter cables.
→ Note: B&G devices are fully compatible with a SimNet network by using a Micro-C to SimNet adapter cable.
→ Note: Triton displays have two Micro-C connectors, and can either be connected inline with the backbone, or wired individually off a drop cable. Connecting from device to device is known as ‘daisy chaining’ This network topology is not officially NMEA 2000 compliant.

Power the network
The network requires its own 12 V DC power supply protected by a 5 amp fuse or breaker. For vessels fitted with 24 V systems, use a DC-DC converter to supply 12 V.

Connect power at any location in the backbone for smaller systems.
For larger systems introduce power at central point in the backbone to “balance” the voltage drop of the network.

→ Note: If joining to an existing NMEA 2000 network that already has its own power supply, do not make another power connection elsewhere in the network, and ensure existing network is not powered by 24 V DC.

→ Note: Do not connect the NMEA 2000 power cable to the same terminals as the engine start batteries, autopilot computer, radar, bow thruster or other high current devices.
The following drawing demonstrates a typical small network. The backbone is made up of directly interconnected T-piece joiners and an extension cable, which is terminated at each end.

1 GPS antenna
2 Zeus²
3 Broadband radar interface
4 SonicHub
5 ‘Drop’ cables (should not exceed 6m (20’) each)
6 Power cable
7 Micro-C T junctions
8 Backbone
9 Micro-C terminator (one male, one female)

NMEA 0183 device connection
The Zeus² display has an NMEA 0183 serial port, providing both an input and an output. The port uses the NMEA 0183 (serial balanced) standard, and can be configured in the software for different baud rates up to 38,400 baud.

1 NMEA 0183 RX_B (orange)
2 NMEA 0183 RX_A (green)
3 NMEA 0183 TX_B (blue)
4 NMEA 0183 TX_A (yellow)

→ **Note:** The connector for NMEA 0183 is labelled VIDEO, as the cable is dual purpose and carries both composite video and NMEA 0183 (on separate wires).

Talkers and Listeners
Do not connect multiple devices outputing data (Talkers) on to the serial input (Rx) of the unit. The NMEA 0183/RS422 standard is not intended for this type of connection, and data will be corrupted if multiple devices transmit simultaneously. The output however may drive
multiple receivers (Listeners). The number of receivers is finite, and depends largely on the receiving hardware. Typically driving three devices is possible.

Ethernet device connection

Ethernet is used to interconnect high bandwidth devices such as radar, sonar, and other multi function displays. The Zeus² 7/9 have one ethernet port, whereas the Zeus² 12 has two. Connection of network devices can be made directly, or via a NEP-2 ethernet expansion port. Additional NEP-2s can be added to provide required number of ports.

→ **Note:** some ethernet devices are equipped with two or more ethernet ports, which allow connection of additional devices, and may eliminate the need for an extra NEP-2.

Video in

Each Zeus² can be connected to two composite video cameras, and display video images on its displays. Both NTSC and PAL formats are supported. The Zeus² video input cable is fitted with female RCA plugs - the camera cables should be terminated with male RCA cables to suit.

→ **Note:** The video images will not be shared with another unit via the network. It is only possible to view video on the unit connected to the video source.
Software setup

The Zeus² requires some initial configuration before use, in order to get the most out of the product. The following sections focus on settings that typically will not require change once configured. User preference settings and operation are covered in the operator manual. Pressing the home key brings up the home page, which has three distinct panels. The scrollable left column of icons access most settings that require configuration;

First time startup

When the Zeus² is started for the first time, or after a factory default, the unit will raise prompts requesting the user to select some fundamental setup options;

Choose language.

Initiate source selection for data sources both internal and external to device.

Check all external data sources and NMEA 2000 data bus are turned on.

Simulation uses recorded data to allow product demonstration of features otherwise not possible without physical installation on a vessel.
Time and Date
Configure time settings to suit vessel location.

![Time Configuration](image)

Power Control setup
Determines unit response to signal applied to yellow wire of power cable.

![Power Control Configuration](image)

These settings do not require adjustment if the yellow wire is connected to ignition or to a stand-alone switch that applies 12V/24V.

> **Note:** The System Controls menu will not display the ‘Power Off’ option when unit is configured as slave. To power down device, the master device must be powered down, or system power removed.

Source selection
Data sources provide live data such as GPS position, heading, wind speed, and temperature. The data may originate from modules internal to the device (eg internal GPS), or external modules connected via NMEA 2000 or NMEA 0183. The internal ‘virtual’ devices typically include echo, MFD, Navigator, Pilot Controller, and iGPS. When a device is connected to more than one source providing the same data, the user has the flexibility to choose the preferred source. Before commencing with source selection make sure all external devices and the NMEA 2000 bus are connected and are turned on.

Auto Select
The Auto Select option will look for all sources connected to the device. If more than one source is available for each data type, selection will be made from an internal priority list. This option will be suitable for the majority of installations.

Manual source selection
Manual selection is generally only required where there is more than one source for the same data, and the automatically selected source is not the one desired.
Group source selection

B&G multifunction displays, autopilot controllers, and instruments have the ability to:

- use data sources (e.g., position, wind direction, etc) that all other products on the network use, or alternatively use a data source independently from other units.
- globally change all displays over to a different source from any display. (This will only include products set to Group mode.)

In order to enable group selection, the display must be set to ‘Default’ group.

Devices with Group set to None can be set to use different sources to those of the rest of the network devices.

Advanced source selection

This allows the most flexible and precise manual control over which devices provide data. Some data sources, such as those for fuel level, or engine RPM, can only be changed via the Advanced menu. Occasionally Auto Select may not assign the desired source, which may be corrected using the Advanced Source Selection. An example of this is where twin installations with NMEA 2000 compliant engines are not programmed with unique instance numbers. This means that the auto select feature can’t determine which engine is fitted on the port and which is fitted on the starboard side.

Device list

The device list shows the physical and virtual devices that provide data. This may include a module inside the Zeus², the NMEA 0183 port, or any external NMEA 2000 device. Selecting a device in this list will bring up additional details and actions:

All devices allow allocation of an instance number via the Configure option. Set unique instance numbers on any identical devices on the network. The Data option shows all data being output by the device. Some devices will show additional option(s) specific to the device - the RC42 illustrated above has a Calibration option, to allow easy setup of this device which does not have its own user interface.

Network Groups

It is possible to group certain settings so they are duplicated across the network on multiple displays. Display (i.e., backlighting), Units (i.e., metric, imperial), Damping (to dynamic data), and Alarms can be grouped either in ‘Default’ group, or groups 1 through to 8. If any of the settings require discrete control, set it to ‘none’.
Diagnostics
The NMEA 2000 tab on the diagnostics page can provide information useful for identifying an issue with the network.

Bus state simply indicates whether the bus is powered, but not necessarily connected to any data sources. However if bus shows as ‘off’, but power is present along with an increasing error count, it is possible that termination or cable topology is incorrect.

Rx Overflows: The CAN driver got too many messages for its buffer before the application could read them.

Rx Overruns: The CAN hardware got too many messages for its buffer before the CAN driver could read them.

Rx/Tx Errors: These two numbers increase when there are error messages, and decrease when messages are received successfully. These (unlike the other values) are not a cumulative count. Under normal operation these should be at 0. Values around 96 upwards indicate a heavily error prone network. If these numbers go too high for a given device, it will automatically drop off the bus.

Fast Packet Errors: Cumulative counter of any fast packet error. This could be missed frame, or frame out of sequence etc. NMEA 2000 PGNs are made of up to 32 frames. The entire message will be discarded when a frame is missed.

→ Note: Rx and Tx Errors often indicate an issue with the physical network, which may be resolved by correcting termination, reducing backbone or drop lengths, or reducing the number of network nodes (devices).

External Alarm Setup
The ‘Siren Enabled’ option must be set in order for the unit to drive the buzzer when an alarm condition arises. Its setting also determines the operation of the external alarm output.

Radar setup
Setup and configuration of the Broadband radar has been simplified compared to traditional pulse radars. There is no zero range (time delay), no warm up time, and no burn-in required.

Radar source
In a system with more than one radar, the correct device to configure can be selected from this menu.

→ Note: some radar like the broadband 4G support dual radar mode, and therefore are represented twice in the source list, with an A and B suffix.

Radar status
Scanner type
Identifies the model of scanner connected to the network.

Software version
Check to make sure you have the latest software. Check website for the latest version.

Serial Number
This number should be recorded for support and insurance purposes.

MARPA status
The MARPA status can identify if a heading sensor is on the network and that the radar is receiving heading information essential for MARPA calculations.

Reset device ID
The earlier Zeus models only support one radar on the network. Should a radar be connected, that has been connected to a dual radar network in the past, it may not be detected by the Zeus because it may have an invalid Device ID. With the radar connected and power up, select the Reset Device ID button to resolve this problem.

⇒ **Note:** This procedure must be performed with only one radar on the network, and only applies where a network combines Zeus with Zeus².

Adjust bearing alignment
This is to align with the heading marker on the screen with the center line of the vessel, this will compensate for any slight misalignment of the scanner during installation. Any inaccuracy will be evident when using MARPA or chart overlay.
Point the boat to be perpendicular to the very end of a breakwater or peninsula. Adjust the bearing alignment setting, so that the heading marker and land mass intersect.

Adjust antenna height
Set the radar scanner height relative to the water surface. The Radar uses this value to calculate the correct STC settings.

Adjust local interference reject
Interference from some onboard sources can interfere with the Broadband radar. One symptom of this could be a large target on the screen that remains in the same relative bearing even if the vessel changes direction. Choose from Local interference rejection LOW, MED or HIGH. Default is LOW

Sidelobe suppression
Occasionally false target returns can occur adjacent to strong target returns such as large ships or container ports. This occurs because not all of the transmitted radar energy can be focused into a single beam by the radar antenna, a small amount energy is transmitted in other directions. This energy is referred to as sidelobe energy and occurs in all radar systems. The returns caused by sidelobes tend to appear as arcs.

⇒ **Note:** This control should only be adjusted by experienced radar users. Target loss in harbour environments may occur if this control is not adjusted correctly.

When the radar is mounted where there are metallic objects near the radar, sidelobe energy increases because the beam focus is degraded. The increased sidelobe returns can be eliminated using the Sidelobe Suppression control in the Radar installation menu.
By default this control is set to Auto and normally should not need to be adjusted. However if there is significant metallic clutter around the radar, sidelobe suppression may need to be increased. The control should be adjusted as follows:
• Set Radar range to between 1/2 nm to 1 nm and Sidelobe Suppression to Auto.
• Take the vessel to a location where sidelobe returns are likely to be seen. Typically this would be near a large ship, container port, or metal bridge
• Traverse the area until the strongest sidelobe returns are seen.
• Change Auto sidelobe suppression to OFF then select and adjust the sidelobe suppression
control until the sidelobe returns are just eliminated. You may need to monitor 5-10 radar sweeps to be sure they have been eliminated.

- Traverse the area again and readjust if sidelobes returns still occur.
- Exit the installation menu.

Restore radar to Factory Default
This can be used to revert all user adjustments.

Video In configuration
Press the menu key when on the video page or panel to open the setup dialogue.

Enable PAL or NTSC depending on the video output standard of the selected camera.

You can optimize the video display by adjusting the video image settings (brightness, saturation, etc.). The settings are applied individually for each video source.

Mirror image may be applied where the camera is providing a rear view, and the user wishes to see objects as they would appear in a vehicle rearview mirror, i.e., on the same side as they actually are.
Autopilot setup

Verifying the autopilot connection
When an AC12N, AC42N, or SG05 is connected to the Zeus² system, the Zeus² will automatically detect the autopilot and an Autopilot menu icon will be included in the ‘Settings’ menu.

If no ‘Autopilot’ icon is available in the menu, establish the connection by running the auto select process.

If the AC12N, AC42N or SG05 is turned off independently of the display, the ‘Autopilot’ menu icon will remain available, but only a few of the menu items will be available.

Commissioning the autopilot
When the autopilot installation is completed, the commissioning procedures must be performed. Failure in setting up the autopilot correctly may prohibit the autopilot from functioning properly.

The setup of the autopilot computers (AC12N/42N) can be done in full from compatible B&G displays that feature AP control, or a Triton display. The following sections describe how you configure the autopilot from the Zeus² unit.

If you connect the Zeus² to an already commissioned autopilot system, you only have to do an automatic source selection as described above before the autopilot is ready to be used.

Dockside setup
Initiating the required dockside setup is done from within the Commissioning dialog. Completed procedures are labelled with a tick.

When the autopilot computer is delivered from factory AND ANY TIME AFTER AN AUTOPILOT RESET HAS BEEN PERFORMED, you will have to run a complete setup again.

All steps in all commissioning procedures are clearly described on-screen, and you will be guided step by step through the process.

1. Press the ‘STBY/AUTO’ key to ensure that the autopilot is in standby mode
2. Activate the autopilot commissioning dialog as shown above
3. Select boat type
 • The boat type setting is used by the system to select appropriate preset steering parameters. It will also affect available autopilot features.
4. Perform the rudder calibration
 • Used if you have a rudder feedback unit installed. This calibration is used to ensure that the physical rudder movement corresponds to the rudder angle displayed on the Zeus² unit.

VRF (Virtual Rudder Feedback) calibration
• The Virtual Feedback option enables your autopilot to steer without a conventional rudder feedback unit. This function is designed for vessels up to 40 ft. powered by outboard or stern drives only.
• The Virtual Feedback option will only be available when there is no feedback unit connected at first time turn on, or at turn on after an autopilot reset.

→ Note: Installing a feedback unit will enhance the performance of the autopilot and provide an accurate rudder angle indicator on the autopilot display. Unless impractical or impossible, a rudder feedback unit should be installed.
5. Set the drive voltage
 • Refer to the drive unit table in the AC12N/AC42N Installation manual or to your drive unit documentation for information.

6. Run the rudder test as described in the on-screen instructions

 \textbf{Note:} If the boat uses power assisted steering, it is important that the engine or electric motor used to enable the power assist steering is turned on prior to this test.

 \textit{Stand CLEAR of the wheel and do not attempt to take manual control of the wheel during this test!}

 • When this test is started the autopilot computer will issue a series of PORT and STBD rudder commands and automatically verify correct rudder direction. It detects minimum power to drive the rudder and reduces the rudder speed if it exceeds the maximum preferred speed (8°/sec.) for autopilot operation. The system will also detect whether the drive unit is a reversible motor or if a solenoid valve is operated.

Rudder drive setup

The rudder drive setup controls how the autopilot computer controls the steering system.

\begin{center}
\begin{tabular}{|l|l|}
\hline
\textbf{Drive voltage} & \\
\hline
Voltage specified for your drive unit. & \\
\hline
The Drive unit voltage setting does not apply when the system operates solenoids on a continuous running pump/steering gear. Hence, the output voltage to the solenoids will be the same as the input voltage. & \\
Refer to the drive unit table in the AC12N/AC42N Installation manual or to your drive unit documentation for information. & \\
\hline
\textbf{Drive engage} & \\
\hline
Clutch & This is the default setting and it allows you to steer the boat with the helm or wheel when in STBY mode (FU and NFU modes) as well as in all auto steering modes. \\
Auto & This option is typically used to switch between two rudder speeds on a continuous running pump, used when different rudder speeds are required for automatic and Follow-up/Non-Follow-up steering. \\
\hline
\textbf{Motor output} & \\
\hline
Shows the amount of power needed to achieve the correct rudder speed. The reading is obtained from the Rudder test. & \\
The automatically set value may be increased or decreased. & \\
\hline
\textbf{Rudder deadband} & \\
This parameter is used to prevent the rudder from hunting. The reading is obtained from the Rudder test which optimizes the deadband to the speed of the boat and the pressure on the rudder. & \\
If the auto-setting does not perform properly due to high inertia from the wheel or a loose steering gear, it can be adjusted manually. Find the lowest possible value that will prevent the & \\
\end{tabular}
\end{center}
rudder from continuous hunting. A deadband will cause inaccurate steering.

Note: The rudder deadband setting is not available when the autopilot is configured for Virtual Rudder Feedback.

Seatrials
A seatrial can only be performed if the dockside settings are completed and confirmed. The seatrial must always be performed in open waters at a safe distance from other traffic.

Note: You can switch the autopilot to standby mode and take manual control of the boat at any time during the seatrial by pressing the ‘STBY/AUTO’ key. The following seatrial calibration should be done:
- Compass calibration; used to automatically compensate for on-board magnetic interference
- Compass offset adjustment, used to compensate for a fixed offset in the final heading readout
- Wind vane offset to compensate for a wind vane that is not mounted facing in exactly the same direction as the bow of the vessel (dead ahead)
- Boat speed calibration
- Transition HI/LO speed setting (the speed at which you want to change the set of steering parameters)
- Automatic tuning of the steering parameters
- Setting the seastate filter
- ‘Saiboat Setup’ menu items

Compass calibration
Before the compass calibration is started, make sure that there is enough open water around the vessel to make a full turn.

The calibration should be done in calm sea conditions and with minimal wind to obtain good results. Follow the on-screen instruction, and use about 60-90 seconds to make a full circle. During the calibration, the compass will measure the magnitude and direction of the local magnetic field.
- If the local magnetic field is stronger than the earth’s magnetic field (the local field is reading more than 100 %), the compass calibration will fail
- If the local field is reading more than 30 %, you should look for any interfering magnetic objects and remove them, or you should move the compass to a different location. The (local) field angle will guide you to the local interfering magnetic object.

Note: Calibration must be made on the compass that is active for the autopilot. If the compass is not possible to initiate calibration from the device list on the Zeus², refer to the compass’ own instructions regarding calibration.

Note: In certain areas and at high latitudes the local magnetic interference becomes more significant and heading errors exceeding ±3° may have to be accepted.

Compass mounting offset
After compass calibration, the difference (if any) between the compass lubber line and the boat’s center line should be compensated for.

1. Find the bearing from the boat position to a visible object. Use a chart or a chart plotter
2. Steer the boat so that the center line of the boat is aligned with the bearing line pointing towards the object
2. Change the offset parameter so that the bearing to the object and the compass readout becomes equal. Refer graphic above

Note: Make sure that both the compass heading and the bearing to the object have the same unit (°M or °T).
Setting the Transition speed (HI/LO)
This is the speed at which the system automatically changes from LO to HI steering parameters.

On power boats it is recommended that you set a value that represents the speed where the hull begins to plane or the speed where you change from slow to cruising speed. On sailboats the transition speed should be set to around 3-4 knots to give the best response in a tack.

A deadband of 2 knots is incorporated to prevent oscillation of HI/LO settings when vessel is travelling at the transition speed.

1 HI response
2 LO response
3 Transition to HI parameters with decreasing speed: 8kn
4 Transition speed set to 9kn
5 Transition to LO parameters with increasing speed: 10kn

Active response parameter set is shown in the autopilot popup, and the following abbreviations are used:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI-A</td>
<td>High response parameters set automatically</td>
</tr>
<tr>
<td>LO-A</td>
<td>Low response parameters set automatically</td>
</tr>
<tr>
<td>HI-M</td>
<td>High response parameters set manually</td>
</tr>
<tr>
<td>LO-M</td>
<td>Low response parameter set manually</td>
</tr>
</tbody>
</table>

Autotuning
The autotune feature will run the boat through several tests and then automatically set the most important steering parameters.

Autotune is not required for the autopilot to function, as it is preset with steering parameters that should steer most boats in the 30-50 foot range.

You can manually adjust all parameters that are set during autotuning.

Seastate filter
The Seastate filter is used to reduce rudder activity and autopilot sensitivity in rough weather.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Seastate filter is disabled. This is default</td>
</tr>
<tr>
<td>AUTO</td>
<td>Reduces rudder activity and autopilot sensitivity in rough weather by an adaptive process. The AUTO setting is recommended if you want to use the seastate filter</td>
</tr>
<tr>
<td>MANUAL</td>
<td>Linked to the steering response control settings described previously. It may be used to manually find the optimum combination of course keeping and low rudder activity in rough but steady sea conditions</td>
</tr>
</tbody>
</table>
Setting sailing parameters

Note: Sailing parameter settings are only available if the boat type is set to Sail.

Tack time
When performing a tack in WIND mode, the rate of turn (tack time) can be adjusted. This will give single-handed sailors time to handle the boat and the sails during a tack.

A turn performed without shifting wind side, will also be made at a controlled turn rate.

<table>
<thead>
<tr>
<th>Range</th>
<th>Change per step</th>
<th>Default</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - 50</td>
<td>1</td>
<td>12</td>
<td>seconds</td>
</tr>
</tbody>
</table>

Tack angle
This value is used to preset the course change used when tacking in AUTO mode. By pressing the left/right arrow keys the course will change as much as this value.

<table>
<thead>
<tr>
<th>Range</th>
<th>Change per step</th>
<th>Default</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 - 150</td>
<td>1</td>
<td>100</td>
<td>°</td>
</tr>
</tbody>
</table>

Wind function
With wind function set to Auto, the autopilot will automatically select between apparent and true wind steering. Auto is default and recommended for cruising.

When the boat is running or on a broad reach, there is a heightened chance it will surf on the waves. This may lead to significant changes in boat speed, and thereby changes in apparent wind angle. True wind steering is therefore used to prevent undesired corrections by the autopilot when heading downwind (or close to), while steering to apparent wind is used when beating or reaching.

Apparent wind steering is preferred when you want to maintain maximum boat speed without continuous trimming of the sails.

VMG optimizing
You can optimize the VMG to wind. When selected the function will be active for 5–10 minutes after a new wind angle has been set and only when beating.

Layline steering
Layline steering is useful when navigating. Cross Track Error (XTE) from the navigator will keep the boat on the track line. If the XTE from the navigator exceeds 0.15 nm, the autopilot will calculate the layline and track towards the waypoint.

Manually adjusting steering parameters
The autotune function in the autopilot is so refined that the majority of boats will need no further adjustments of the steering parameters. On some boats however, or in particular sea conditions, fine tuning of the steering parameters may improve the performance of the autopilot.

Transition speed
Refer previous description.

Rudder
This parameter determines the ratio between commanded rudder and the heading error. The higher rudder value the more rudder is applied.

If the value is too small it will take a long time to compensate for a heading error, and the autopilot will fail to keep a steady course.

If the value is set too high the overshoot will increase and the steering will be unstable.

Counter rudder
Counter rudder is the amount of rudder used to try to prevent the boat from yawing around the set course. Higher counter rudder settings result in more rudder being applied.

The best way of checking the value of the Counter rudder setting is when making turns.

The figures illustrate the effects of various Counter Rudder settings;
1 Counter rudder too low; overshoot response
2 Counter rudder too high; sluggish and creeping response
3 Correct setting or counter rudder; ideal response

Auto trim
This parameter defines how fast the autopilot shall correspond after having registered a heading error.
The standard value is 40 seconds which should work well on most boats. Rule of thumb: Set to same value (seconds) as the boat's length in feet. On boats operating on VRF the value should be set to 20 seconds.

Rate limit
Sets the maximum allowed rate of turn.
The value should be kept at 6.0°/second unless there is a need for more rapid response in turns.

Minimum rudder
This parameter filters small rudder commands to prevent high rudder activity.
Some boats may have a tendency to not respond to small rudder commands around the "course keeping" position because of a small rudder, a rudder deadband, whirls/disturbance of the water-stream passing the rudder or it is a single nozzle water jet boat.
By increasing the Minimum rudder parameter you may improve the course keeping performance on some boats. This will however increase the rudder activity.

Minimum wind angle to port and starboard
These parameters should be set identical to the minimum apparent wind angle that will keep the sails from stalling and maintain boat speed. The parameters will vary from boat to boat.
The settings are used for the tack-prevent function. They also apply when the autopilot is operating in WindNAV mode.
You can select different minimum wind angles for port and starboard. The difference between port and starboard will be taken into account when calculating the Distance To Turn (DTT).

Navigation change limit
This parameter defines the maximum course change that the autopilot is allowed to make when the Zeus² is following a route (NAV steering).
If the required course change to the next waypoint in a route is more than the set limit, you are prompted and must acknowledge the course change before the autopilot will turn the vessel.
Fuel setup

The fuel utility monitors a vessel’s fuel consumption. This information is totalled to indicate trip and seasonal fuel usage, and is used to calculate fuel economy for display on instrument pages and the data bar.

To use the utility, a Navico Fuel Flow sensor (petrol/gasoline only), or a NMEA 2000 engine adaptor cable/gateway with Navico Fuel Data Storage device must be fitted to the vessel. Neither the Navico Fuel Flow sensor, nor the Suzuki engine interface require the use of a separate Fuel Storage device. Refer to the engine manufacturer or dealer for information on whether or not your engine provides a data output, and what adaptor is available to connect to NMEA 2000.

Once physical connection is made, ensure source selection is completed. Multiple engine installations using Fuel Flow sensors, or Fuel Data Storage devices, will require setup of related engine location in the device list. For general source selection information refer to “Source selection” on page 15.

→ note: Multiple engines utilising a single gateway will not work with the Navico Fuel Storage device.

Vessel setup

This dialog must be used to select the number of engines, the number of tanks and vessel's total fuel capacity across all tanks.

Fuel flow configuration

Once the number of engines are set, it’s required to set which fuel flow sensor is connected to which engine. Under ‘Device list’ on the Network page, view the ‘Device Configuration’ page for each sensor, and set ‘Location’ to match the engine the device is connected to.

‘Unconfigure’ is for defaulting the device clearing all user settings, and ‘Reset Fuel Flow’ will restore only the ‘Fuel K-Value’ setting, if set in ‘Calibrate’. Only Navico devices can be reset.

Calibrate

Calibration may be required to accurately match measured flow with actual fuel flow. Access calibration from the ‘Refuel’ dialog. Calibration is only possible on Navico’s Fuel Flow sensor.

1. Start with a full tank and run the engine as it would normally be operated.
2. After at least several litres (a few gallons) have been used, the tank should be fully refilled, and the ‘Set to full’ option selected.
3. Select the ‘Calibrate’ option.
4. Set the ‘actual amount used’ based on amount of fuel added to tank.
5. Select OK to save settings. The ‘Fuel K-Value’ should now show a new value.

➔ **Note:** To calibrate multiple engines repeat the steps above, one engine at a time. Alternatively, run all engine simultaneously, and divide the ‘Actual amount used’ by the number of engines. This assumes reasonably even fuel consumption on all engines.

➔ **Note:** Calibrate option is only available when ‘Set to full’ is selected, and a Fuel Flow is connected and set up as a source.

➔ **Note:** A maximum of 8 engines is supported using Fuel Flow sensors.

Fuel Level

With the use of a Navico Fluid Level device connected to a suitable tank level sensor, it is possible to measure the amount of fuel remaining in any equiped tank. The number of tanks must be set in ‘Vessel Configuration’ to allow discrete tank assignment of the Fluid Level devices. Under ‘Device list’ on the Network page, view the ‘Device Configuration’ page for each sensor, and set Tank location, Fluid type, and Tank size.

Refer to the Operator manual on setting up the Instrument bar or a gauge on the Instruments page using the Fluid Level device data.

➔ **Note:** A maximum of 5 tanks is supported using Fluid Level devices.

➔ **Note:** Tank data that is output by a compatible engine gateway can also be displayed, however tank configuration for such a data source is not possible via the Zeus² displays.
CZone setup
In order to communicate with the CZone modules connected to the network, the Zeus² must be assigned a unique CZone Display Dipswitch setting.
The functionality of the CZone system is determined by the CZone Config File (.zcf), which is stored on all CZone modules and supported B&G displays, such as the Zeus². The file is created using the CZone Configuration Tool, a specialised PC application available from BEP Marine Ltd, and associated CZone distributors.
The Zeus² system provides a means to load the Config file, as well as apply updates to module firmware, removing the need to take a laptop computer aboard the vessel.

Enabling CZone functionality
If the Czone device(s) are not automatically detected, it is possible to manually enable CZone.

Assigning the dipswitch setting
Every B&G product capable of controlling and viewing CZone devices must be assigned a virtual dipswitch setting. This setting is unique for each device. Typically it is set after the config file already exists on the CZone system, but it may also be set in advance. To do so, access the CZone menu on the Settings page.
When the config is already available on the network, it will immediately commence uploading to the Zeus² once the dipswitch is set. Allow this to complete, without interruption.

Setting CZone to display at startup
With this option selected, the CZone control page will be shown first, every time the Zeus² is powered up.

CZone backlight control
Enabling this will cause the Zeus² to synchronize its backlight setting with that of any CZone Display Interfaces set up to share backlight settings.

> note: CZone Config also needs to have the Zeus² set as a controller.

Import and backup a config file
The files page may be used to import CZone config files, or export a copy to a Micro SD card. Importing will overwrite the existing file on the Zeus² and all connected CZone devices.
For further information see “Backing up and Importing user data” on page 33

Upgrading module firmware
The files page also allows the loading of CZone module firmware updates. For further information refer to “NMEA 2000 and Ethernet device updates” on page 33
Software updates and data backup

From time to time B&G releases software updates to its existing products. Updates are created for a variety of reasons; to add or improve features, to add support for new external devices, or to fix software bugs.

Updates can be found on the B&G website: http://www.bandg.com/Support/Downloads/

The Zeus² may be used to apply software updates to itself, and to supported NMEA 2000 and ethernet devices, with files read off an SD card.

Before initiating an update to the Zeus² itself, be sure to back up any potentially valuable user data.

Backing up and Importing user data

There are two files that can be backed up that relate to user changes made to the system:

- ‘Waypoints, Routes, and Tracks database’
- ‘Settings database’ (includes preferences such as unit settings, custom new pages, and Czone configuration files)

The backup procedure is similar for both - simply select which you want to backup and select the destination to save to, e.g. on the unit, or to an SD card.

The user has the option of exporting all waypoints, or exporting only waypoints contained within a specific region.

Waypoint backup offers different file formats to save as:

- User data file version 5: Use with current Navico MFDs. Offers most detail
- User data file version 4: Use with current Navico MFDs
- User data file version 3 (with depth): Use with legacy Lowrance GPS chartplotters
- User data file version 2 (no depth): Use with legacy Lowrance GPS chartplotters
- GPX (GPS Exchange): Use with some other manufacturers’ GPS products, and PC applications
- Northstar .dat (no Tracks): Use with legacy Northstar chartplotters

The ‘Serial port’ option outputs the waypoints over NMEA 0183. The receiving GPS/PC will typically need to be set to allow import of waypoints.

Later, if the Zeus² is defaulted or user data is accidentally deleted, simply return to the files page, highlight the backed up file, and select ‘Import’. View file details for creation date.

Zeus² software upgrades

The update file must be loaded to the root directory of an SD card.

In the files menu, locate the update file on the SD card and select ‘Upgrade’. Accept the prompt to reboot the unit, and wait a few moments as the unit restarts. Do not remove the SD card or repower the Zeus² until the process is completed (this will typically take no more than a couple of minutes). Backup may also be initiated at boot up - simply insert the SD card, before turning unit on, boot unit and follow on-screen instructions.

NMEA 2000 and Ethernet device upgrades

The update file must be loaded to the root directory of an SD card.

To update NMEA 2000 and ethernet devices select the ‘upgrade’ option presented when the file is highlighted. A list should appear displaying any compatible devices the update file applies to - in most cases this will be a single device. Select device and initiate upgrade. Do not interrupt the upgrade process.

-note: If no device is shown, check device to be updated has power, and run any outstanding updates for the display first.
NMEA 0183 setup

The NMEA 0183 port must be set to suit the speed of connected devices, and can be configured to output only the sentences required by listening devices.

<table>
<thead>
<tr>
<th>Sources...</th>
<th>Device list</th>
<th>Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Groups...</td>
<td>Receive waypoint</td>
<td></td>
</tr>
<tr>
<td>Damping...</td>
<td></td>
<td>Serial output</td>
</tr>
<tr>
<td>Water Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMEA2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMEA0183</td>
<td>Ethernet</td>
<td></td>
</tr>
</tbody>
</table>

Receive waypoint

Select this option to allow device capable of creating and exporting waypoints via NMEA 0183 to transfer directly to the Zeus².

Baud rate

This should be set to correspond with devices connected to the NMEA 0183 input and output. The input and output (Tx, Rx) use the same baud rate setting.

> **Note:** AIS transponders typically operate at NMEA 0183-HS (high speed), and will require the baud rate to be set to 38,400.

Serial Output

Selection will determine the whether data is output via Tx lines, and will enable editing of the output sentences list.

Serial Output Sentences

This list allows control over which sentences need to be transmit to other devices from the NMEA 0183 port. Due to the limited bandwidth of NMEA 0183 it is desirable to only enable the data that is required. The less sentences are selected, the higher the output rate of the enabled sentences.

NMEA 0183 over Ethernet

The NMEA 0183 data stream is also output over ethernet, which is made available to tablet devices and PCs, using the WiFi1 wireless adaptor.

The ethernet dialogue provides IP and port data typically required for configuring the application on the third party device.
Ethernet setup

No special setup is required for establishing an ethernet network, it is all ‘plug and play’. An NEP-2 connected between an Zeus² and another network module (e.g. 4G radar) will automatically start working, and relay data between the two devices.

Diagnostics

The UDB (User Data Base) tab on the diagnostics page, provides information on Ethernet activity, as shown below.

The ‘Reset Display List’ can be used to refresh the list of connected displays and their UDB version.

Databases

The upper table gives an account of the various automatically synchronised databases that ensure B&G display units are all using the same user settings and data. Each unit stores the database locally, so that all information is available if the device is run in standalone. Databases can become unsynchronised when one or more displays in a multi display network are not powered up while other displays are being operated. Creation of waypoints, routes, tracks, and altering global settings all affect databases. When the tick box ‘Dirty’ is ticked, the unit has identified that its database is older than that of another device on the network. The tickbox should clear within seconds of both devices being powered up, and the databases synchronising. If it does not clear, it is recommended that all devices have the power cycled.

IP addresses

The lower table shows the IP address of the display being viewed (top of list), the Master display (with a tick next to it), and any other displays in a multi display network. The function of the Master is invisible to the end user - It manages database synchronisation, however this task automatically shifts to another display if the current master is shut down. The IP address list only refreshes after all devices on the network have been powered down - a single device that is shutdown on the network will not be removed from the table shown on other devices. When powering up a system that has been completely shutdown, a network connectivity issue can be identified if a display does not show any other IP addresses than its own.

The ‘UDB version’ is dependant on the software version installed on the display. It will never change on its own, unlike the ‘Version’ of the Databases on the upper table. It is preferable to have all UDB versions the same. This can usually be acheived by loading the latest software on to your display - refer to “Software Updates and Screen Calibration” on page 36.

Module network light

The network LED on modules such as NEP-2, GoFree WiFi-1, and RI10, can be useful for determining if the network is fundamentally operational. No light indicates no connection. A rapidly blinking green LED means the network module is communicating with another device.

FLIR® camera setup

The FLIR M-series cameras are plug and play when used in conjuction with the WiFi-1 acting as a DHCP host. For setup on networks not utilizing a DHCP host, refer to the B&G website www.bandg.com or contact B&G technical support.
Wifi setup

To connect to a GoFree device a suitable wifi Android tablet or Apple ipad is required. Navigate to the wifi network connection page on the tablet, and find the ‘GoFree Wifi xxxx’ network. Connect to the network using the eight character password printed on the silver label of the GoFree module. If the module is installed out of easy access, see the following section ‘Access Points’ on how to identify the ‘Network Key’ (password) from the Zeus².

The above dialogue will appear on the Zeus² display when connection is attempted. Select ‘Yes’ for one-time connection, or ‘Always’ if device is to be remembered for regular connection.

Devices

When a wifi device is connected, it should appear in the wifi devices list. Selecting ‘Always allow’ will mean the device can automatically connect without needing a password each time. This menu also allows disconnection of devices that no longer require access.

Access Points

This page shows connected GoFree devices and their IP address.

Mode

When more than one device is connected, only one may operate as ‘Primary’. Primary mode determines that the device is acting as DHCP server - only one DHCP server may exist on a network at a time.

To set a device as secondary, the Zeus² must initially be connected to only one GoFree module. Pressing ‘menu’ with the device highlighted, opens the dialogue that allows setting to secondary. Once completed, a second module may be plugged in, and will automatically default to primary.

➤ **Note:** Use of multiple devices is solely for range extension purposes, and is usually only required on larger vessels.
Channel

Channel setting is available in order to overcome potential interference to the GoFree device by another RF device transmitting in the same frequency band.

Advanced

Tools are available within the Zeus² software to assist in fault-finding and setting up the wifi network.

Iperf

Iperf is a commonly used network performance tool. It's provided for testing Wifi network performance around the vessel so weak spots or problem areas can be identified. The application must be installed on and run from the tablet device. The Zeus² must be running Iperf server before initiating the test from the tablet. On exiting the page, Iperf will automatically stop running.

DHCP Probe

The GoFree Wifi module contains a DHCP server that will allocate IP addresses for all the MFDs, radars and sonars in a network. If integrating with other devices, such as a 3G modem or satellite phone, other devices in the network may also be acting as DHCP servers. To make it easy to find all DHCP servers on a network, dhcp_probe may be run from the Zeus². Only one DHCP device may be operational on the same network at a time. If a second device is found, turn off its DHCP feature if possible. Refer to the device’s own instructions for further assistance.

Note: Iperf and DHCP Probe are tools provided for diagnostic purposes by users familiar with network terminology and configuration. Navico is not the original developer of these tools, and can not provide support related to their use.
Accessories

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000-11586-001</td>
<td>Zeus² LITERATURE PACK</td>
</tr>
<tr>
<td>000-11587-001</td>
<td>Zeus² CHART CARD DOOR</td>
</tr>
<tr>
<td>000-11588-001</td>
<td>Zeus² CONNECTOR COVERS (7/9")</td>
</tr>
<tr>
<td>000-11589-001</td>
<td>Zeus² CONNECTOR COVERS (12")</td>
</tr>
<tr>
<td>000-11591-001</td>
<td>Zeus² 7 SUN COVER</td>
</tr>
<tr>
<td>000-11593-001</td>
<td>Zeus² 9 SUN COVER</td>
</tr>
<tr>
<td>000-11595-001</td>
<td>Zeus² 12 SUN COVER</td>
</tr>
<tr>
<td>000-11598-001</td>
<td>Zeus² 7 EDGE BEZELS (PAIR - SILVER AND BLACK)</td>
</tr>
<tr>
<td>000-11599-001</td>
<td>Zeus² 9 EDGE BEZELS (PAIR - SILVER AND BLACK)</td>
</tr>
<tr>
<td>000-11600-001</td>
<td>Zeus² 12 EDGE BEZELS (PAIR - SILVER AND BLACK)</td>
</tr>
</tbody>
</table>
Supported data

NMEA 2000 compliant PGN List

NMEA 2000 PGN (receive)

<table>
<thead>
<tr>
<th>PGN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>59392</td>
<td>ISO Acknowledgement</td>
</tr>
<tr>
<td>59904</td>
<td>ISO Request</td>
</tr>
<tr>
<td>60928</td>
<td>ISO Address Claim</td>
</tr>
<tr>
<td>61184</td>
<td>Parameter Request/Command</td>
</tr>
<tr>
<td>65285</td>
<td>Temperature with Instance</td>
</tr>
<tr>
<td>65289</td>
<td>Trim Tab Insect Configuration</td>
</tr>
<tr>
<td>65291</td>
<td>Backlight Control</td>
</tr>
<tr>
<td>65292</td>
<td>Clear Fluid Level Warnings</td>
</tr>
<tr>
<td>65293</td>
<td>LGC-2000 Configuration</td>
</tr>
<tr>
<td>65323</td>
<td>Data User Group Request</td>
</tr>
<tr>
<td>65325</td>
<td>Reprogram Status</td>
</tr>
<tr>
<td>65341</td>
<td>Autopilot Mode</td>
</tr>
<tr>
<td>65480</td>
<td>Autopilot Mode</td>
</tr>
<tr>
<td>126208</td>
<td>ISO Command Group Function</td>
</tr>
<tr>
<td>126992</td>
<td>System Time</td>
</tr>
<tr>
<td>126996</td>
<td>Product Info</td>
</tr>
<tr>
<td>127237</td>
<td>Heading/Track Control</td>
</tr>
<tr>
<td>127245</td>
<td>Rudder</td>
</tr>
<tr>
<td>127250</td>
<td>Vessel Heading</td>
</tr>
<tr>
<td>127251</td>
<td>Rate of Turn</td>
</tr>
<tr>
<td>127257</td>
<td>Attitude</td>
</tr>
<tr>
<td>127258</td>
<td>Magnetic Variation</td>
</tr>
<tr>
<td>127488</td>
<td>Engine Parameters, Rapid Update</td>
</tr>
<tr>
<td>127489</td>
<td>Engine Parameters, Dynamic</td>
</tr>
<tr>
<td>127493</td>
<td>Transmission Parameters, Dynamic</td>
</tr>
<tr>
<td>127503</td>
<td>AC input status</td>
</tr>
<tr>
<td>127504</td>
<td>AC Output Status</td>
</tr>
<tr>
<td>127505</td>
<td>Fluid Level</td>
</tr>
<tr>
<td>127506</td>
<td>DC Detailed Status</td>
</tr>
<tr>
<td>127507</td>
<td>Charger Status</td>
</tr>
<tr>
<td>127508</td>
<td>Battery Status</td>
</tr>
<tr>
<td>127509</td>
<td>Inverter Status</td>
</tr>
<tr>
<td>128259</td>
<td>Speed, Water referenced</td>
</tr>
<tr>
<td>128267</td>
<td>Water Depth</td>
</tr>
<tr>
<td>128275</td>
<td>DistanceLog</td>
</tr>
<tr>
<td>129025</td>
<td>Position, Rapid Update</td>
</tr>
<tr>
<td>129026</td>
<td>COG & SOG, Rapid Update</td>
</tr>
<tr>
<td>129029</td>
<td>GNSS Position Data</td>
</tr>
<tr>
<td>129033</td>
<td>Time & Date</td>
</tr>
<tr>
<td>129038</td>
<td>AIS Class A Position Report</td>
</tr>
<tr>
<td>129039</td>
<td>AIS Class B Position Report</td>
</tr>
<tr>
<td>129040</td>
<td>AIS Class B Extended Position Report</td>
</tr>
<tr>
<td>129283</td>
<td>Cross Track Error</td>
</tr>
<tr>
<td>129284</td>
<td>Navigation Data</td>
</tr>
<tr>
<td>129539</td>
<td>GNSS DOPs</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>129540</td>
<td>GNSS Sats in View</td>
</tr>
<tr>
<td>129794</td>
<td>AIS Class A Static and Voyage Related Data</td>
</tr>
<tr>
<td>129801</td>
<td>AIS Addressed Safety Related Message</td>
</tr>
<tr>
<td>129802</td>
<td>AIS Safety Related Broadcast Message</td>
</tr>
<tr>
<td>129808</td>
<td>DSC Call Information</td>
</tr>
<tr>
<td>129809</td>
<td>AIS Class B "CS" Static Data Report, Part A</td>
</tr>
<tr>
<td>129810</td>
<td>AIS Class B "CS" Static Data Report, Part B</td>
</tr>
<tr>
<td>130074</td>
<td>Route and WP Service - WP List - WP Name & Position</td>
</tr>
<tr>
<td>130306</td>
<td>Wind Data</td>
</tr>
<tr>
<td>130310</td>
<td>Environmental Parameters</td>
</tr>
<tr>
<td>130311</td>
<td>Environmental Parameters</td>
</tr>
<tr>
<td>130312</td>
<td>Temperature</td>
</tr>
<tr>
<td>130313</td>
<td>Humidity</td>
</tr>
<tr>
<td>130314</td>
<td>Actual Pressure</td>
</tr>
<tr>
<td>130576</td>
<td>Small Craft Status</td>
</tr>
<tr>
<td>130577</td>
<td>Direction Data</td>
</tr>
<tr>
<td>130840</td>
<td>Data User Group Configuration</td>
</tr>
<tr>
<td>130842</td>
<td>SimNet DSC Message</td>
</tr>
<tr>
<td>130845</td>
<td>Parameter Handle</td>
</tr>
<tr>
<td>130850</td>
<td>Event Command</td>
</tr>
<tr>
<td>130851</td>
<td>Event Reply</td>
</tr>
<tr>
<td>130817</td>
<td>Product Info</td>
</tr>
<tr>
<td>130820</td>
<td>Reprogram Status</td>
</tr>
<tr>
<td>130831</td>
<td>Suzuki Engine and Storage Device Config</td>
</tr>
<tr>
<td>130832</td>
<td>Fuel Used - High Resolution</td>
</tr>
<tr>
<td>130834</td>
<td>Engine and Tank Configuration</td>
</tr>
<tr>
<td>130835</td>
<td>SetEngineAndTankConfiguration</td>
</tr>
<tr>
<td>130838</td>
<td>Fluid Level Warning</td>
</tr>
<tr>
<td>130839</td>
<td>Pressure Insect Configuration</td>
</tr>
<tr>
<td>130843</td>
<td>Sonar Status, Frequency and DSP Voltage</td>
</tr>
</tbody>
</table>
NMEA 2000 PGN (transmit)

<table>
<thead>
<tr>
<th>PGN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61184</td>
<td>Parameter Request/Command</td>
</tr>
<tr>
<td>65287</td>
<td>Configure Temperature Insects</td>
</tr>
<tr>
<td>65289</td>
<td>Trim Tab Insect Calibration</td>
</tr>
<tr>
<td>65290</td>
<td>Paddle Wheel Speed Configuration</td>
</tr>
<tr>
<td>65291</td>
<td>Backlight Control</td>
</tr>
<tr>
<td>65292</td>
<td>Clear Fluid Level Warnings</td>
</tr>
<tr>
<td>65293</td>
<td>LGC-2000 Configuration</td>
</tr>
<tr>
<td>126208</td>
<td>ISO Command Group Function</td>
</tr>
<tr>
<td>126992</td>
<td>System Time</td>
</tr>
<tr>
<td>126996</td>
<td>Product Info</td>
</tr>
<tr>
<td>127237</td>
<td>Heading/Track Control</td>
</tr>
<tr>
<td>127250</td>
<td>Vessel Heading</td>
</tr>
<tr>
<td>127258</td>
<td>Magnetic Variation</td>
</tr>
<tr>
<td>128259</td>
<td>Speed, Water referenced</td>
</tr>
<tr>
<td>128267</td>
<td>Water Depth</td>
</tr>
<tr>
<td>128275</td>
<td>DistanceLog</td>
</tr>
<tr>
<td>129025</td>
<td>Position, Rapid Update</td>
</tr>
<tr>
<td>129026</td>
<td>COG & SOG, Rapid Update</td>
</tr>
<tr>
<td>129029</td>
<td>GNSS Position Data</td>
</tr>
<tr>
<td>129283</td>
<td>Cross Track Error</td>
</tr>
<tr>
<td>129284</td>
<td>Navigation Data</td>
</tr>
<tr>
<td>129285</td>
<td>Route/Waypoint Data</td>
</tr>
<tr>
<td>129539</td>
<td>GNSS DOPs</td>
</tr>
<tr>
<td>129540</td>
<td>GNSS Sats in View</td>
</tr>
<tr>
<td>130074</td>
<td>Route and WP Service - WP List - WP Name & Position</td>
</tr>
<tr>
<td>130306</td>
<td>Wind Data</td>
</tr>
<tr>
<td>130310</td>
<td>Environmental Parameters</td>
</tr>
<tr>
<td>130311</td>
<td>Environmental Parameters</td>
</tr>
<tr>
<td>130312</td>
<td>Temperature</td>
</tr>
<tr>
<td>130577</td>
<td>Direction Data</td>
</tr>
<tr>
<td>130840</td>
<td>Data User Group Configuration</td>
</tr>
<tr>
<td>130845</td>
<td>Parameter Handle</td>
</tr>
<tr>
<td>130850</td>
<td>Event Command</td>
</tr>
<tr>
<td>130818</td>
<td>Reprogram Data</td>
</tr>
<tr>
<td>130819</td>
<td>Request Reprogram</td>
</tr>
<tr>
<td>130828</td>
<td>Set Serial Number</td>
</tr>
<tr>
<td>130831</td>
<td>Suzuki Engine and Storage Device Config</td>
</tr>
<tr>
<td>130835</td>
<td>SetEngineAndTankConfiguration</td>
</tr>
<tr>
<td>130836</td>
<td>Fluid Level Insect Configuration</td>
</tr>
<tr>
<td>130837</td>
<td>Fuel Flow Turbine Configuration</td>
</tr>
<tr>
<td>130839</td>
<td>Pressure Insect Configuration</td>
</tr>
<tr>
<td>130845</td>
<td>Weather and Fish Prediction and Barometric Pressure History</td>
</tr>
<tr>
<td>130850</td>
<td>Evinrude Engine Warnings</td>
</tr>
</tbody>
</table>
NMEA 0183 supported sentences

<table>
<thead>
<tr>
<th>TX / RX</th>
<th>GPS</th>
<th>Navigation</th>
<th>Echo</th>
<th>Compass</th>
<th>Wind</th>
<th>AIS / DSC</th>
<th>MARPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive</td>
<td>GGA, GLL</td>
<td>GGA, GLL</td>
<td>DBT</td>
<td>HDG</td>
<td>MWV</td>
<td>DSC, DSE</td>
<td>TLL</td>
</tr>
<tr>
<td>Transmit</td>
<td>GGA, GLL</td>
<td>GSA, GSV</td>
<td>DPT</td>
<td>HDG</td>
<td>MWV</td>
<td>VDM</td>
<td>TTM</td>
</tr>
</tbody>
</table>

- **Navigation**: Receive RMC, Transmit AAM, APB, BOD, BWC, BWR, RMC, RMB, XTE, XDR
- **Echo**: Receive DBT, DPT, MTW, VLW, VHW, Transmit DBT, DPT, MTW, VLW, VHW
- **Compass**: Receive HDG, HDT, HDM, Transmit HDG
- **Wind**: Receive MWV, MWD, Transmit MWV, MWD
- **AIS / DSC**: Receive DSC, DSE, VDM, AIS sentences are not bridged to or from NMEA 2000.
- **MARPA**: Transmit TLL, TTM, These are only output sentences
Specifications

Mechanical/Environmental

<table>
<thead>
<tr>
<th>Model</th>
<th>Zeus² 7</th>
<th>Zeus² 9</th>
<th>Zeus² 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casing</td>
<td>PC / ABS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temp</td>
<td>-15°C to +55°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water ingress</td>
<td>IPX6 and 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (excluding mounting hardware)</td>
<td>1.071 kg</td>
<td>1.414 kg</td>
<td>3.171 kg</td>
</tr>
<tr>
<td>Display brightness</td>
<td>1200nits</td>
<td>1200nits</td>
<td>1200nits</td>
</tr>
<tr>
<td>Display resolution</td>
<td>480 x 800 (H x W)</td>
<td>480 x 800 (H x W)</td>
<td>800 x 1280 (H x W)</td>
</tr>
<tr>
<td>Viewing angle in degrees (typical value @ contrast ratio =10)</td>
<td>L/R: 70 top: 50 bottom:60</td>
<td>L/R: 70 top: 50 bottom:70</td>
<td>L/R: 88 top: 88 bottom:88</td>
</tr>
<tr>
<td>Dimensions (overall)</td>
<td>See dimensioned drawings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical

<table>
<thead>
<tr>
<th>Model</th>
<th>Zeus² 7</th>
<th>Zeus² 9</th>
<th>Zeus² 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>9 - 31.2 V DC</td>
<td>9 - 31.2 V DC</td>
<td>9 - 31.2 V DC</td>
</tr>
<tr>
<td>Power consumption</td>
<td>11.9 W</td>
<td>11.8 W</td>
<td>25.7 W</td>
</tr>
<tr>
<td>Low power standby mode</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td>reverse polarity and temporary over-voltage to 36V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm output current</td>
<td>1 A max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor</td>
<td>iMX61 single core</td>
<td>iMX61 single core</td>
<td>iMX61 dual core</td>
</tr>
<tr>
<td>Conformity</td>
<td>CE, C-Tick, HDMI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interfaces

<table>
<thead>
<tr>
<th>Model</th>
<th>Zeus² 7</th>
<th>Zeus² 9</th>
<th>Zeus² 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>1 port</td>
<td>1 port</td>
<td>2 ports</td>
</tr>
<tr>
<td>NMEA 2000 (compliant)</td>
<td>1 port (Micro-C male)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video input</td>
<td>2 analogue ports - NTCS or PAL format</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video output</td>
<td>N/A</td>
<td>N/A</td>
<td>HDMI</td>
</tr>
<tr>
<td>SD</td>
<td>dual micro SD - up to 32GB ea.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMEA 0183 port baud rate</td>
<td>4800, 9600, 19200, & 38400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charting support</td>
<td>Embedded low detail background + Insight, Navionics and CMap on SD card</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dimensioned drawings

Zeus² 7 and Zeus² 9

Zeus² 7: 231.5mm (9.11”), ZEUS² 9: 279.44mm (11”)

ZEUS² 7: 147.2mm (5.8”), ZEUS² 9: 163.6mm (6.44”)

ZEUS² 9: 105.6mm (4.16”), ZEUS² 9: 106.6mm (4.2”) ZEUS² 9: 84.0mm (3.3”) ZEUS² 9: 147.1mm (5.79”)

ZEUS² 7: 251.1mm (9.89”), ZEUS² 9: 305.1mm (12.0”)

ZEUS² 7: 163.6mm (6.44”), ZEUS² 9: 178.27mm

Zeus² 12

345.0mm, (13.58”) 105.6mm (4.16”)

215.0mm (8.46”) 84.0mm (3.3”)

248.5mm (9.82”) 126mm (4.96”)

375.1mm (14.77”)